Nano Research

, Volume 10, Issue 9, pp 2944–2953 | Cite as

MoS2-graphene in-plane contact for high interfacial thermal conduction

  • Xiangjun Liu
  • Junfeng Gao
  • Gang Zhang
  • Yong-Wei Zhang
Research Article


Recent studies have indicated that two-dimensional (2D) MoS2 exhibits low in-plane and inter-plane thermal conductivities. This poses a significant challenge to heat management in MoS2-based electronic devices. To address this challenge, we have designed MoS2-graphene interfaces that fully utilize graphene, a 2D material that exhibits very high thermal conductivity. First, we performed ab initio atomistic simulations to understand bonding and structural stability at the interfaces. The interfaces that we designed, which were connected via strong covalent bonds between Mo and C atoms, were energetically stable. We then performed molecular dynamics simulations to investigate interfacial thermal conductance in these materials. Surprisingly, the interfacial thermal conductance was high and comparable to those of covalently bonded graphene-metal interfaces. Importantly, each interfacial Mo–C bond served as an independent thermal channel, enabling modulation of the interfacial thermal conductance by controlling the Mo vacancy concentration at the interface. The present work provides a viable heat management strategy for MoS2-based electronic devices.


MoS2 graphene interfacial thermal conductance thermal management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the financial support from the Agency for Science, Technology and Research (A*STAR), Singapore and the use of computing resources at the A*STAR Computational Resource Centre, Singapore. This work was supported in part by a grant from the Science and Engineering Research Council (No. 152-70-00017).


  1. [1]
    Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.CrossRefGoogle Scholar
  2. [2]
    Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151.CrossRefGoogle Scholar
  3. [3]
    Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.CrossRefGoogle Scholar
  4. [4]
    Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C.-J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.CrossRefGoogle Scholar
  5. [5]
    Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z.-Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.CrossRefGoogle Scholar
  6. [6]
    Cui, X.; Lee, G.-H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C.-H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.CrossRefGoogle Scholar
  7. [7]
    Liu, Y.; Wu, H.; Cheng, H.-C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030–3034.CrossRefGoogle Scholar
  8. [8]
    Yu, Z. H.; Ong, Z.-Y.; Pan, Y. M.; Cui, Y.; Xin, R.; Shi, Y.; Wang, B. G.; Wu, Y.; Chen, T. S.; Zhang, Y.-W. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 2016, 28, 547–552.CrossRefGoogle Scholar
  9. [9]
    Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.CrossRefGoogle Scholar
  10. [10]
    Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xiang, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.CrossRefGoogle Scholar
  11. [11]
    Taube, A.; Judek, J.; Lapinska, A.; Zdrojek, M. Temperaturedependent thermal properties of supported MoS2 monolayers. ACS Appl. Mater. Interfaces 2015, 7, 5061–5065.CrossRefGoogle Scholar
  12. [12]
    Liu, X. J.; Zhang, G.; Pei, Q.-X.; Zhang, Y.-W. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 2013, 103, 133113.CrossRefGoogle Scholar
  13. [13]
    Li, W.; Carrete, J.; Mingo, N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 2013, 103, 253103.CrossRefGoogle Scholar
  14. [14]
    Wei, X. L.; Wang, Y. C.; Shen, Y. L.; Xie, G. F.; Xiao, H. P.; Zhong, J. X.; Zhang, G. Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene. Appl. Phys. Lett. 2014, 105, 103902.CrossRefGoogle Scholar
  15. [15]
    Jiang, J.-W.; Zhuang, X. Y.; Rabczuk, T. Orientation dependent thermal conductance in single-layer MoS2. Sci. Rep. 2013, 3, 2209.CrossRefGoogle Scholar
  16. [16]
    Wu, X. F.; Yang, N.; Luo, T. F. Unusual isotope effect on thermal transport of single layer molybdenum disulphide. Appl. Phys. Lett. 2015, 107, 191907.CrossRefGoogle Scholar
  17. [17]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefGoogle Scholar
  18. [18]
    Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555–558.CrossRefGoogle Scholar
  19. [19]
    Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.CrossRefGoogle Scholar
  20. [20]
    Sadeghi, M. M.; Jo, I.; Shi, L. Phonon-interface scattering in multilayer graphene on an amorphous support. Proc. Natl. Acad. Sci. USA 2013, 110, 16321–16326.CrossRefGoogle Scholar
  21. [21]
    Kresse, G.; Furthmü ller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  22. [22]
    Kresse, G.; Furthmü ller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comp. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  23. [23]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  24. [24]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  25. [25]
    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.CrossRefGoogle Scholar
  26. [26]
    Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486.CrossRefGoogle Scholar
  27. [27]
    Liang, T.; Phillpot, S. R.; Sinnott, S. B. Parametrization of a reactive many-body potential for Mo–S systems. Phys. Rev. B 2009, 79, 245110.CrossRefGoogle Scholar
  28. [28]
    Stewart, J. A.; Spearot, D. E. Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Modelling Simul. Mater. Sci. Eng. 2013, 21, 045003.CrossRefGoogle Scholar
  29. [29]
    Liu, X. J.; Zhang, G.; Zhang, Y.-W. Tunable mechanical and thermal properties of one-dimensional carbyne chain: Phase transition and microscopic dynamics. J. Phys. Chem. C 2015, 119, 24156–24164.CrossRefGoogle Scholar
  30. [30]
    Tang, D.-M.; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. I.; Sorokin, P. B.; Lou, J. et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 2014, 5, 3631.Google Scholar
  31. [31]
    Dang, K. Q.; Spearot, D. E. Effect of point and grain boundary defects on the mechanical behavior of monolayer MoS2 under tension via atomistic simulations. J. Appl. Phys. 2014, 116, 013508.CrossRefGoogle Scholar
  32. [32]
    Wang, X. N.; Tabarraei, A.; Spearot, D. E. Fracture mechanics of monolayer molybdenum disulfide. Nanotechnology 2015, 26, 175703.CrossRefGoogle Scholar
  33. [33]
    Liu, X. J.; Zhang, G.; Zhang, Y.-W. Graphene-based thermal modulators. Nano Res. 2015, 8, 2755–2762.CrossRefGoogle Scholar
  34. [34]
    Ding, Z. W.; Pei, Q.-X.; Jiang, J.-W.; Huang, W. X.; Zhang, Y.-W. Interfacial thermal conductance in graphene/MoS2 heterostructures. Carbon 2016, 96, 888–896.CrossRefGoogle Scholar
  35. [35]
    Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.CrossRefGoogle Scholar
  36. [36]
    Volz, S. G.; Chen, G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 1999, 75, 2056–2058.CrossRefGoogle Scholar
  37. [37]
    Gao, Y. B.; Zhang, Y. F.; Chen, P. C.; Li, Y. C.; Liu, M. X.; Gao, T.; Ma, D. L.; Chen, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Toward single-layer uniform hexagonal boron nitride–graphene patchworks with zigzag linking edges. Nano Lett. 2013, 13, 3439–3443.CrossRefGoogle Scholar
  38. [38]
    Liu, M. X.; Li, Y. C.; Chen, P. C.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Gao, T.; Gao, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a zigzag boundary. Nano Lett. 2014, 14, 6342–6347.CrossRefGoogle Scholar
  39. [39]
    Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744.CrossRefGoogle Scholar
  40. [40]
    Wang, Z. Y.; Li, H.; Liu, Z.; Shi, Z. J.; Lu, J.; Suenaga, K.; Joung, S.-K.; Okazaki, T.; Gu, Z. N.; Zhou, J. et al. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 13840–13847.CrossRefGoogle Scholar
  41. [41]
    Girit, Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C.-H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G. et al. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.CrossRefGoogle Scholar
  42. [42]
    Gao, J. F.; Zhao, J. J.; Ding, F. Transition metal surface passivation induced graphene edge reconstruction. J. Am. Chem. Soc. 2012, 134, 6204–6209.CrossRefGoogle Scholar
  43. [43]
    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.CrossRefGoogle Scholar
  44. [44]
    Mao, R.; Kong, B. D.; Gong, C.; Xu, S.; Jayasekera, T.; Cho, K.; Kim, K. W. First-principles calculation of thermal transport in metal/graphene systems. Phys. Rev. B 2013, 87, 165410.CrossRefGoogle Scholar
  45. [45]
    Schelling, P. K.; Phillpot, S. R.; Keblinski, P. Phonon wavepacket dynamics at semiconductor interfaces by moleculardynamics simulation. Appl. Phys. Lett. 2002, 80, 2484?2486.CrossRefGoogle Scholar
  46. [46]
    Xu, W.; Zhang, G.; Li, B. W. Interfacial thermal resistance and thermal rectification between suspended and encased single layer graphene. J. Appl. Phys. 2014, 116, 134303.CrossRefGoogle Scholar
  47. [47]
    Cai, Y. Q.; Lan, J. H.; Zhang, G.; Zhang, Y.-W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.CrossRefGoogle Scholar
  48. [48]
    Drost, R.; Kezilebieke, S.; Ervasti, M. M.; Hämälä inen, S. K.; Schulz, F.; Harju, A.; Liljeroth, P. Synthesis of extended atomically perfect zigzag graphene–boron nitride interfaces. Sci. Rep. 2015, 5, 16741.CrossRefGoogle Scholar
  49. [49]
    Feng, L. P.; Su, J.; Liu, Z.-T. Effect of vacancies in monolayer MoS2 on electronic properties of Mo–MoS2 contacts. RSC Adv. 2015, 5, 20538–20544.CrossRefGoogle Scholar
  50. [50]
    Xie, G. F.; Shen, Y. L.; Wei, X. L.; Yang, L. W.; Xiao, H. P.; Zhong, J. X.; Zhang, G. A bond-order theory on the phonon scattering by vacancies in two-dimensional materials. Sci. Rep. 2014, 4, 5085.CrossRefGoogle Scholar
  51. [51]
    Hu, L.; Desai, T.; Keblinski, P. Determination of interfacial thermal resistance at the nanoscale. Phys. Rev. B 2011, 83, 195423.CrossRefGoogle Scholar
  52. [52]
    Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.CrossRefGoogle Scholar
  53. [53]
    Bagri, A.; Kim, S. P.; Ruoff, R. S.; Shenoy, V. B. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 2011, 11, 3917–3921.CrossRefGoogle Scholar
  54. [54]
    Chen, J.; Zhang, G.; Li, B. W. Thermal contact resistance across nanoscale silicon dioxide and silicon interface. J. Appl. Phys. 2012, 112, 064319.CrossRefGoogle Scholar
  55. [55]
    Jones, R. E.; Duda, J. C.; Zhou, X. W.; Kimmer, C. J.; Hopkins, P. E. Investigation of size and electronic effects on Kapitza conductance with non-equilibrium molecular dynamics. Appl. Phys. Lett. 2013, 102, 183119.CrossRefGoogle Scholar
  56. [56]
    Liu, X. J.; Zhang, G.; Zhang, Y.-W. Thermal conduction across the one-dimensional interface between a MoS2 monolayer and metal electrode. Nano Res. 2016, 9, 2372–2383.CrossRefGoogle Scholar
  57. [57]
    Xu, Y.; Chen, X. B.; Gu, B.-L.; Duan, W.-H. Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 233116.CrossRefGoogle Scholar
  58. [58]
    Nika, D. L.; Askerov, A. S.; Balandin, A. A. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 2012, 12, 3238–3244.CrossRefGoogle Scholar
  59. [59]
    Yu, C. X.; Zhang, G. Impacts of length and geometry deformation on thermal conductivity of graphene nanoribbons. J. Appl. Phys. 2013, 113, 044306.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiangjun Liu
    • 1
  • Junfeng Gao
    • 1
  • Gang Zhang
    • 1
  • Yong-Wei Zhang
    • 1
  1. 1.Institute of High Performance ComputingA*STARSingaporeSingapore

Personalised recommendations