Nano Research

, Volume 10, Issue 9, pp 2934–2943 | Cite as

Active coherent control of nanoscale light confinement: Modulation of plasmonic modes and position of hotspots for surface-enhanced Raman scattering detection

Research Article


Multistep plasmonic nanostructures can induce the deep modulation of electromagnetic-field interactions on the nanoscale for positioning hotspots, and this generation of enhanced fields is important in many optical applications. In this article, a new strategy is proposed for fabricating a plasmonic doublestacked nanocone (DSC) nanostructure. In the DSC structure, a tunable plasmonic hybrid mode proceeds from the strong coupling of the plasmonic resonance of a fundamental cavity mode with a localized surface plasmon gap mode. In the nanostructure, the far-field response is deeply modulated and the hottest spots can be effectively positioned on the top surface of the DSC nanostructure. A controllable and cost-effective mask-reconfiguration technique for manufacturing the multiscale nanostructure is developed, which guarantees the generation of the introduced crucial stage on the DSC nanostructure. To evaluate the features of the plasmonic resonance, the DSC nanostructure is used as a surface-enhanced Raman scattering (SERS) substrate for detecting 4-mercaptopyridine molecules under specific excitation conditions. Its good performance, with an average measured SERS enhancement factor as high as 108, demonstrates its strong plasmonic-mode hybridization and extreme field enhancement.


surface plasmons mode hybridization positioning hotspot double-stacked nanocone (DSC) nanostructure surface-enhanced Raman scattering (SERS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge support by the National Science & Technology Pillar Program (No. 2011BAK15B02), the Key Research Program of National Nanotechnology and Science (No. 2016YFA0200901), the Research and Applications of the Common Technology of National Quality Infrastructure of China (No. 2016YFF0200602).


  1. [1]
    Gramotnev, D. K.; Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics 2013, 8, 13–22.CrossRefGoogle Scholar
  2. [2]
    Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204.CrossRefGoogle Scholar
  3. [3]
    Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nanooptics of surface plasmonpolaritons. Phys. Rep. 2005, 408, 131–314.CrossRefGoogle Scholar
  4. [4]
    Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.CrossRefGoogle Scholar
  5. [5]
    de Abajo, F. J. G. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010, 82, 209–275.CrossRefGoogle Scholar
  6. [6]
    Zhou, W.; Dridi, M.; Suh, J. Y.; Kim, C. H.; Co, D. T.; Wasielewski, M. R.; Schatz, G. C.; Odom, T. W. Lasing action in strongly coupled plasmonicnanocavity arrays. Nat. Nanotechnol. 2013, 8, 506–511.CrossRefGoogle Scholar
  7. [7]
    Bharadwaj, P.; Deutsch, B.; Novotny, L. Optical antennas. Adv. Opt. Photon. 2009, 1, 438–483.CrossRefGoogle Scholar
  8. [8]
    Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.CrossRefGoogle Scholar
  9. [9]
    Ghosh, S. K.; Pal, T. Interparticlecoupling effect on the surface plasmonresonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.CrossRefGoogle Scholar
  10. [10]
    Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: Acomprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.CrossRefGoogle Scholar
  11. [11]
    Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.CrossRefGoogle Scholar
  12. [12]
    Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004, 4, 899–903.CrossRefGoogle Scholar
  13. [13]
    Gilroy, K. D.; Farzinpour, P.; Sundar, A.; Tan, T.; Hughes, R. A.; Neretina, S. Substrate-based galvanic replacement reactions carried out on heteroepitaxially formed silver templates. Nano Res. 2013, 6, 418–428.CrossRefGoogle Scholar
  14. [14]
    Zhang, Y. C.; Bahk, J. H.; Lee, J.; Birkel, C. S.; Snedaker, M. L.; Liu, D. Y.; Zeng, H. M.; Moskovits, M.; Shakouri, A.; Stucky, G. D. Hot carrier filtering in solution processed heterostructures: Aparadigm for improving thermoelectric efficiency. Adv. Mater. 2014, 26, 2755–2761.CrossRefGoogle Scholar
  15. [15]
    Nishijima, Y.; Hashimoto, Y.; Rosa, L.; Khurgin, J. B.; Juodkazis, S. Scaling rules of SERS intensity. Adv. Opt. Mater. 2014, 2, 382–388.CrossRefGoogle Scholar
  16. [16]
    Feng, L.; Ma, R. P.; Wang, Y. D.; Xu, D. R.; Xiao, D. Y.; Liu, L. X.; Lu, N. Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering. Nano Res. 2015, 8, 3715–3724.CrossRefGoogle Scholar
  17. [17]
    Zhu, W. Q.; Esteban, R.; Borisov, A. G.; Baumberg, J. J.; Nordlander, P.; Lezec, H. J.; Aizpurua, J.; Crozier, K. B. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 2016, 7, 11495.CrossRefGoogle Scholar
  18. [18]
    Li, W. D.; Ding, F.; Hu, J.; Chou, S. Y. Three-dimensional cavity nanoantenna coupled plasmonicnanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt. Express 2011, 19, 3925–3936.CrossRefGoogle Scholar
  19. [19]
    Deng, X. G.; Braun, G. B.; Liu, S.; Sciortino, P. F.; Koefer, B.; Tombler, T.; Moskovits,M. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 1780–1786.CrossRefGoogle Scholar
  20. [20]
    Sajanlal, P. R.; Pradeep, T. Mesoflowers: Anew class of highly efficient surface-enhanced Raman active and infraredabsorbing materials. Nano Res. 2009, 2, 306–320.CrossRefGoogle Scholar
  21. [21]
    Chalabi, H.; Schoen, D.; Brongersma, M. L. Hot-electron photodetection with a plasmonicnanostripe antenna. Nano Lett. 2014, 14, 1374–1380.CrossRefGoogle Scholar
  22. [22]
    Ertsgaard, C. T.; McKoskey, R. M.; Rich, I. S.; Lindquist, N. C. Dynamic placement of plasmonichotspots for superresolution surface-enhanced Raman scattering. ACS Nano 2014, 8, 10941–10946.CrossRefGoogle Scholar
  23. [23]
    Pavaskar, P.; Theiss, J.; Cronin, S. B. Plasmonic hot spots: Nanogap enhancement vs. focusing effects from surrounding nanoparticles. Opt. Express 2012, 20, 14656–14662.Google Scholar
  24. [24]
    Li, K. R.; Stockman, M. I.; Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 2003, 91, 227402.CrossRefGoogle Scholar
  25. [25]
    Stockman, M. I.; Faleev, S. V.; Bergman, D. J. Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 2002, 88, 067402.CrossRefGoogle Scholar
  26. [26]
    Stockman, M. I. Nanoplasmonics: Past, present, and glimpse into future. Opt. Express 2011, 19, 22029–22106.CrossRefGoogle Scholar
  27. [27]
    Höppener, C.; Lapin, Z. J.; Bharadwaj, P.; Novotny, L. Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Phys. Rev. Lett. 2012, 109, 017402.CrossRefGoogle Scholar
  28. [28]
    Höppener, C.; Beams, R.; Novotny, L. Background suppression in near-field optical imaging. Nano Lett. 2009, 9, 903–908.CrossRefGoogle Scholar
  29. [29]
    Bidault, S.; de Abayo, F. J. G.; Polman, A. Plasmon-based nanolenses assembled on a well-defined DNA template. J. Am. Chem. Soc. 2008, 130, 2750–2751.CrossRefGoogle Scholar
  30. [30]
    Kravets, V. G.; Schedin, F.; Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 2008, 101, 087403.CrossRefGoogle Scholar
  31. [31]
    Krachmalnicoff, V.; Castanié, E.; de Wilde, Y.; Carminati, R. Fluctuations of the local density of states probe localized surfaceplasmons on disordered metal films. Phys. Rev. Lett. 2010, 105, 183901.CrossRefGoogle Scholar
  32. [32]
    Bouchet, D.; Cao, D.; Carminati, R.; de Wilde, Y.; Krachmalnicoff, V. Long-range plasmon-assisted energy transfer between fluorescent emitters. Phys. Rev. Lett. 2016, 116, 037401.CrossRefGoogle Scholar
  33. [33]
    Cao, D.; Cazé, A.; Calabrese, M.; Pierrat, R.; Bardou, N.; Collin, S.; Carminati, R.; Krachmalnicoff, V.; de Wilde, Y. Mapping the radiative and the apparent nonradiativelocal density ofstates in the near field of a metallic nanoantenna. ACS Photonics 2015, 2, 189–193.CrossRefGoogle Scholar
  34. [34]
    Stockman, M. I. A fluctuating fractal nanoworld. Physics 2010, 3, 90.CrossRefGoogle Scholar
  35. [35]
    Ward, D. R.; Hüser, F.; Pauly, F.; Cuevas, J. C.; Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 2010, 5, 732–736.CrossRefGoogle Scholar
  36. [36]
    Au, L.; Chen, Y. C.; Zhou, F.; Camargo, P. H. C.; Lim, B.; Li, Z. Y.; Ginger, D. S.; Xia, Y. N. Synthesis and optical properties of cubic gold nanoframes. Nano Res. 2008, 1, 441–449.CrossRefGoogle Scholar
  37. [37]
    Lan, X.; Wang, Q. B. Self-assembly of chiral plasmonic nanostructures. Adv. Mater. 2016, 28, 10499–10507.CrossRefGoogle Scholar
  38. [38]
    Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Yin, H. H.; Kuang, H.; Wang, L. B.; Xu, C. L.; Koto, A. N. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 2013, 135, 18629–18636.CrossRefGoogle Scholar
  39. [39]
    Shen, C. Q.; Lan, X.; Lu, X. X.; Ni, W. H.; Wang, Q. B. Tuning the structural asymmetries of three-dimensional gold nanorod assemblies. Chem. Commun. 2015, 51, 13627–13629.CrossRefGoogle Scholar
  40. [40]
    Chen, Z.; Lan, X.; Chiu, Y. C.; Lu, X. X.; Ni, W. H.; Gao, H. W.; Wang, Q. B. Strong chiroptical activities in gold nanorod dimers assembled using DNA origami templates. ACS Photonics 2015, 2, 392–397.CrossRefGoogle Scholar
  41. [41]
    Lindquist, N. C.; Jose, J.; Cherukulappurath, S.; Chen, X. S.; Johnson, T. W.; Oh, S. H. Tip-based plasmonics: Squeezing light with metallic nanoprobes. Laser Photonics Rev. 2013, 7, 453–477.CrossRefGoogle Scholar
  42. [42]
    Valev, V. K.; Sihanek, A. V.; Jeyaram, Y.; Denkova, D.; de Clercq, B.; Petkov, V.; Zheng, X.; Volskiy, V.; Gillijns, W.; Vandenbosch, G. A. E. et al. Hotspot decorations map plasmonic patterns with the resolution of scanning probe techniques. Phys. Rev. Lett. 2011, 106, 226803.CrossRefGoogle Scholar
  43. [43]
    Lan, X.; Chen, Z.; Dai, G. L.; Lu, X. X.; Ni, W. H.; Wang, Q. B. Bifacial DNA origami-directed discrete, threedimensional, anisotropic plasmonicnanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 2013, 135, 11441–11444.CrossRefGoogle Scholar
  44. [44]
    Tian, Y.; Wang, T.; Liu, W. Y.; Xin, H. L.; Li, H. L.; Ke, Y. G.; Shih, W. M.; Gang, O. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 2015, 10, 637–644.CrossRefGoogle Scholar
  45. [45]
    Lan, X.; Lu, X. X.; Shen, C. Q.; Ke, Y. G.; Ni, W. H.; Wang, Q. B. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 2015, 137, 457–462.CrossRefGoogle Scholar
  46. [46]
    Information on (cited 12 Oct. 2016).Google Scholar
  47. [47]
    Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.CrossRefGoogle Scholar
  48. [48]
    Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636.CrossRefGoogle Scholar
  49. [49]
    Jin, M. L.; van Wolferen, H.; Wormeester, H.; van den Berg, A.; Carlen, E. T. Large-area nanogapplasmon resonator arrays for plasmonics applications. Nanoscale 2012, 4, 4712–4718.CrossRefGoogle Scholar
  50. [50]
    Fan, J. A.; Wu, C.; Bao, K.; Bao, J. M.; Bardhan, R.; Halas, N. J.; Manoharan, V. N.; Nordlander, P.; Shvets, G.; Capasso, F. Self-assembled plasmonic nanoparticle clusters. Science 2010, 328, 1135–1138.CrossRefGoogle Scholar
  51. [51]
    Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhendong Zhu
    • 1
    • 2
    • 3
  • Qixia Wang
    • 2
  • Fa Zeng
    • 2
    • 4
  • Oubo You
    • 2
  • Sitian Gao
    • 1
  • Benfeng Bai
    • 2
  • Qiaofeng Tan
    • 2
  • Guofan Jin
    • 2
  • Qunqing Li
    • 3
  • Shoushan Fan
    • 3
  • Wei Li
    • 1
  • Yushu Shi
    • 1
  • Xueshen Wang
    • 1
  1. 1.Division of Nano Metrology and Materials MeasurementNational Institute of MetrologyBeijingChina
  2. 2.State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision InstrumentTsinghua UniversityBeijingChina
  3. 3.Tsinghua–Foxconn Nanotechnology Research CenterTsinghua UniversityBeijingChina
  4. 4.Laser Fusion Research CenterChina Academic of Engineering PhysicsMianyangChina

Personalised recommendations