Nano Research

, Volume 10, Issue 9, pp 2923–2933 | Cite as

Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes

Research Article

Abstract

Iron oxides have attracted considerable interest as abundant materials for high-capacity Li-ion battery anodes. However, their fast capacity fading owing to poorly controlled reversibility of the conversion reactions greatly hinders their application. Here, a sandwich-structured nanocomposite of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles were developed as high-performance Li-ion battery anode. N-doped graphene serves as a conducting framework for the self-assembled structure and controls Fe3O4 nucleation through the interaction of N dopants, surfactant molecules, and iron precursors. Fe3O4 nanoparticles were well dispersed with a uniform diameter of ~15 nm. The unique sandwich structure enables good electron conductivity and Li-ion accessibility and accommodates a large volume change. Hence, it delivers good cycling reversibility and rate performance with a capacity of ~1,227 mA·h·g–1 and 96.8% capacity retention over 1,000 cycles at a current density of 3 A·g–1. Our work provides an ideal structure design for conversion anodes or other electrode materials requiring a large volume change.

Keywords

N-doped graphene iron oxides self-assembly Li-ion battery density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1502_MOESM1_ESM.pdf (2 mb)
Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes

References

  1. [1]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  2. [2]
    Croguennec, L.; Palacin, M. R. Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 3140–3156.CrossRefGoogle Scholar
  3. [3]
    Wang, H. L.; Dai, H. J. Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.CrossRefGoogle Scholar
  4. [4]
    Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.CrossRefGoogle Scholar
  5. [5]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  6. [6]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  7. [7]
    Tucek, J.; Kemp, K. C.; Kim, K. S.; Zboril, R. Iron-oxidesupported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 2014, 8, 7571–7612.CrossRefGoogle Scholar
  8. [8]
    Zhang, H. W.; Zhou, L.; Noonan, O.; Martin, D. J.; Whittaker, A. K.; Yu, C. Z. Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 2014, 24, 4337–4342.CrossRefGoogle Scholar
  9. [9]
    Yang, Y. Q.; Zhang, J. N.; Wu, X. C.; Fu, Y. S.; Wu, H. X.; Guo, S. W. Composites of boron-doped carbon nanosheets and iron oxide nanoneedles: Fabrication and lithium ion storage performance. J. Mater. Chem. A 2014, 2, 9111–9117.CrossRefGoogle Scholar
  10. [10]
    Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145–E149.CrossRefGoogle Scholar
  11. [11]
    Jia, X. L.; Cheng, Y. H.; Lu, Y. F.; Wei, F. Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials. ACS Nano 2014, 8, 9265–9273.CrossRefGoogle Scholar
  12. [12]
    Chen, S. Q.; Bao, P. T.; Wang, G. X. Synthesis of Fe2O3–CNT–graphene hybrid materials with an open threedimensional nanostructure for high capacity lithium storage. Nano Energy 2013, 2, 425–434.CrossRefGoogle Scholar
  13. [13]
    Chen, M. H.; Liu, J. L.; Chao, D. L.; Wang, J.; Yin, J. H.; Lin, J. Y.; Fan, H. J.; Shen, Z. X. Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 2014, 9, 364–372.CrossRefGoogle Scholar
  14. [14]
    Sun, Z. Y.; Xie, K. P.; Li, Z. A.; Sinev, I.; Ebbinghaus, P.; Erbe, A.; Farle, M.; Schuhmann, W.; Muhler, M.; Ventosa, E. Hollow and yolk-shell iron oxide nanostructures on fewlayer graphene in Li-ion batteries. Chem.—Eur. J. 2014, 20, 2022–2030.CrossRefGoogle Scholar
  15. [15]
    Hu, J. T.; Zheng, J. X.; Tian, L. L.; Duan, Y. D.; Lin, L. P.; Cui, S. H.; Peng, H.; Liu, T. C.; Guo, H.; Wang, X. W. et al. A core–shell nanohollow-γ-Fe2O3@graphene hybrid prepared through the kirkendall process as a high performance anode material for lithium ion batteries. Chem. Commun. 2015, 51, 7855–7858.CrossRefGoogle Scholar
  16. [16]
    An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250–6256.CrossRefGoogle Scholar
  17. [17]
    Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.CrossRefGoogle Scholar
  18. [18]
    Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3d graphene foams cross-linked with preencapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909–2914.CrossRefGoogle Scholar
  19. [19]
    Yu, S. H.; Conte, D. E.; Baek, S.; Lee, D. C.; Park, S. K.; Lee, K. J.; Piao, Y. Z.; Sung, Y. E.; Pinna, N. Structureproperties relationship in iron oxide-reduced graphene oxide nanostructures for Li-ion batteries. Adv. Funct. Mater. 2013, 23, 4293–4305.CrossRefGoogle Scholar
  20. [20]
    Wang, H. W.; Xu, Z. J.; Yi, H.; Wei, H. G.; Guo, Z. H.; Wang, X. F. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86–96.CrossRefGoogle Scholar
  21. [21]
    Zhao, B. T.; Zheng, Y.; Ye, F.; Deng, X.; Xu, X. M.; Liu, M. L.; Shao, Z. P. Multifunctional iron oxide nanoflake/ graphene composites derived from mechanochemical synthesis for enhanced lithium storage and electrocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 14446–14455.CrossRefGoogle Scholar
  22. [22]
    Lee, K. S.; Park, S.; Lee, W.; Yoon, Y. S. Hollow nanobarrels of α-Fe2O3 on reduced graphene oxide as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2027–2034.CrossRefGoogle Scholar
  23. [23]
    Pan, L.; Zhu, X. D.; Xie, X. M.; Liu, Y. T. Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: Hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater. 2015, 25, 3341–3350.CrossRefGoogle Scholar
  24. [24]
    Li, Q.; Mahmood, N.; Zhu, J. H.; Hou, Y. L.; Sun, S. H. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 2014, 9, 668–683.CrossRefGoogle Scholar
  25. [25]
    Wang, Z. Y.; Liu, C. J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy 2015, 11, 277–293.CrossRefGoogle Scholar
  26. [26]
    Wu, S. P.; Xu, R.; Lu, M. J.; Ge, R. Y.; Iocozzia, J.; Han, C. P.; Jiang, B. B.; Lin, Z. Q. Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500400.CrossRefGoogle Scholar
  27. [27]
    Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502–510.CrossRefGoogle Scholar
  28. [28]
    Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 2016, 9, 2904–2911.CrossRefGoogle Scholar
  29. [29]
    Wang, D. H.; Kou, R.; Choi, D.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L. et al. Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electrochemical energy storage. ACS Nano 2010, 4, 1587–1595.CrossRefGoogle Scholar
  30. [30]
    Li, X. L.; Qi, W.; Mei, D. H.; Sushko, M. L.; Aksay, I.; Liu, J. Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxidegraphene nanocomposites. Adv. Mater. 2012, 24, 5136–5141.CrossRefGoogle Scholar
  31. [31]
    Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249.CrossRefGoogle Scholar
  32. [32]
    Liu, S. H.; Dong, Y. F.; Zhao, C. T.; Zhao, Z. B.; Yu, C.; Wang, Z. Y.; Qiu, J. S. Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for longlife lithium storage and efficient oxygen reduction. Nano Energy 2015, 12, 578–587.CrossRefGoogle Scholar
  33. [33]
    Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098.CrossRefGoogle Scholar
  34. [34]
    Wang, X.; Cao, X. Q.; Bourgeois, L.; Guan, H.; Chen, S. M.; Zhong, Y. T.; Tang, D. M.; Li, H. Q.; Zhai, T. Y.; Li, L. et al. N-doped graphene-SnO2 sandwich paper for highperformance lithium-ion batteries. Adv. Funct. Mater. 2012, 22, 2682–2690.CrossRefGoogle Scholar
  35. [35]
    Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogendoped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.CrossRefGoogle Scholar
  36. [36]
    Li, X. L.; Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944.CrossRefGoogle Scholar
  37. [37]
    Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  38. [38]
    Marsden, A. J.; Brommer, P.; Mudd, J. J.; Dyson, M. A.; Cook, R.; Asensio, M.; Avila, J.; Levy, A.; Sloan, J.; Quigley, D. et al. Effect of oxygen and nitrogen functionalization on the physical and electronic structure of graphene. Nano Res. 2015, 8, 2620–2635.CrossRefGoogle Scholar
  39. [39]
    Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.CrossRefGoogle Scholar
  40. [40]
    He, C. Y.; Wang, R. H.; Fu, H. G.; Shen, P. K. Nitrogenself-doped graphene as a high capacity anode material for lithium-ion batteries. J. Mater. Chem. 2013, 1, 14586–14591.CrossRefGoogle Scholar
  41. [41]
    Chang, Y. H.; Li, J.; Wang, B.; Luo, H.; He, H. Y.; Song, Q.; Zhi, L. J. Synthesis of 3d nitrogen-doped graphene/ Fe3O4 by a metal ion induced self-assembly process for high-performance li-ion batteries. J. Mater. Chem. 2013, 1, 14658–14665.CrossRefGoogle Scholar
  42. [42]
    Yang, L.; Guo, G. N.; Sun, H. J.; Shen, X. D.; Hu, J. H.; Dong, A. G.; Yang, D. the C and N sources to prepare yolk–shell Fe3O4@N-doped carbon nanoparticles and its high performance in lithium-ion battery. Electrochim. Acta 2016, 190, 797–803.CrossRefGoogle Scholar
  43. [43]
    Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.CrossRefGoogle Scholar
  44. [44]
    Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.CrossRefGoogle Scholar
  45. [45]
    Yun, S.; Lee, Y. C.; Park, H. S. Phase-controlled iron oxide nanobox deposited on hierarchically structured graphene networks for lithium ion storage and photocatalysis. Sci. Rep. 2016, 6, 19959.CrossRefGoogle Scholar
  46. [46]
    Yu, X. B.; Qu, B.; Zhao, Y.; Li, C. Y.; Chen, Y. J.; Sun, C. W.; Gao, P.; Zhu, C. L. Growth of hollow transition metal (Fe, Co, Ni) oxide nanoparticles on graphene sheets through kirkendall effect as anodes for high-performance lithium-ion batteries. Chem.—Eur. J. 2016, 22, 1638–1645.CrossRefGoogle Scholar
  47. [47]
    Zhang, Z. H.; Wang, F.; An, Q.; Li, W.; Wu, P. Y. Synthesis of graphene@ Fe3O4@C core–shell nanosheets for highperformance lithium ion batteries. J. Mater. Chem. 2015, 3, 7036–7043.CrossRefGoogle Scholar
  48. [48]
    Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.CrossRefGoogle Scholar
  49. [49]
    Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706–1717.CrossRefGoogle Scholar
  50. [50]
    Liu, Y. P.; Huang, K.; Luo, H.; Li, H. X.; Qi, X.; Zhong, J. X. Nitrogen-doped graphene-Fe3O4 architecture as anode material for improved Li-ion storage. RSC Adv. 2014, 4, 17653–17659.CrossRefGoogle Scholar
  51. [51]
    Qin, G. H.; Fang, Z. W.; Wang, C. Y. Template free construction of a hollow Fe3O4 architecture embedded in an N-doped graphene matrix for lithium storage. Dalton Trans. 2015, 44, 5735–5745.CrossRefGoogle Scholar
  52. [52]
    Lu, X. Y.; Wang, R. H.; Bai, Y.; Chen, J. J.; Sun, J. Facile preparation of a three-dimensional Fe3O4/macroporous graphene composite for high-performance li storage. J. Mater. Chem. 2015, 3, 12031–12037.CrossRefGoogle Scholar
  53. [53]
    Sakthivel, T.; Gunasekaran, V.; Kim, S. J. Effect of oxygenated functional groups on the photoluminescence properties of graphene-oxide nanosheets. Mater. Sci. Semicond. Process. 2014, 19, 174–178.CrossRefGoogle Scholar
  54. [54]
    Tang, L. H.; Wang, Y.; Li, Y. M.; Feng, H. B.; Lu, J.; Li, J. H. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19, 2782–2789.CrossRefGoogle Scholar
  55. [55]
    Sun, L.; Wang, L.; Tian, C. G.; Tan, T. X.; Xie, Y.; Shi, K. Y.; Li, M. T.; Fu, H. G. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv. 2012, 2, 4498–4506.CrossRefGoogle Scholar
  56. [56]
    Chen, P.; Xiao, T. Y.; Qian, Y. H.; Li, S. S.; Yu, S. H. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 2013, 25, 3192–3196.Google Scholar
  57. [57]
    Li, L.; Kovalchuk, A.; Fei, H. L.; Peng, Z. W.; Li, Y. L.; Kim, N. D.; Xiang, C. S.; Yang, Y.; Ruan, G. D.; Tour, J. M. Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv. Energy Mater. 2015, 5, 1500171.CrossRefGoogle Scholar
  58. [58]
    Jiang, X.; Yang, X. L.; Zhu, Y. H.; Yao, Y. F.; Zhao, P.; Li, C. Z. Graphene/carbon-coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J. Mater. Chem. 2015, 3, 2361–2369.CrossRefGoogle Scholar
  59. [59]
    Yang, S. B.; Sun, Y.; Chen, L.; Hernandez, Y.; Feng, X. L.; Mü llen, K. Porous iron oxide ribbons grown on graphene for high-performance lithium storage. Sci. Rep. 2012, 2, 427.CrossRefGoogle Scholar
  60. [60]
    Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.CrossRefGoogle Scholar
  61. [61]
    McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  62. [62]
    Su, J.; Cao, M. H.; Ren, L.; Hu, C. W. Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469–14477.CrossRefGoogle Scholar
  63. [63]
    Segall, M. D.; Philip, J. D. L.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002, 14, 2717–2744.Google Scholar
  64. [64]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  65. [65]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wen Qi
    • 1
  • Xuan Li
    • 2
  • Hui Li
    • 3
  • Weikang Wu
    • 3
  • Pei Li
    • 2
  • Ying Wu
    • 1
  • Chunjiang Kuang
    • 1
  • Shaoxiong Zhou
    • 1
  • Xiaolin Li
    • 4
  1. 1.Beijing Key Laboratory of Energy Nanomaterials, Advance Technology & Materials Co., LtdChina Iron & Steel Research Institute GroupBeijingChina
  2. 2.School of Materials Science and EngineeringTianjin UniversityTianjinChina
  3. 3.Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of EducationShandong UniversityJinanChina
  4. 4.Department of Stationary Energy StoragePacific Northwest National LaboratoryRichlandUSA

Personalised recommendations