Nano Research

, Volume 10, Issue 9, pp 2923–2933 | Cite as

Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes

Research Article


Iron oxides have attracted considerable interest as abundant materials for high-capacity Li-ion battery anodes. However, their fast capacity fading owing to poorly controlled reversibility of the conversion reactions greatly hinders their application. Here, a sandwich-structured nanocomposite of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles were developed as high-performance Li-ion battery anode. N-doped graphene serves as a conducting framework for the self-assembled structure and controls Fe3O4 nucleation through the interaction of N dopants, surfactant molecules, and iron precursors. Fe3O4 nanoparticles were well dispersed with a uniform diameter of ~15 nm. The unique sandwich structure enables good electron conductivity and Li-ion accessibility and accommodates a large volume change. Hence, it delivers good cycling reversibility and rate performance with a capacity of ~1,227 mA·h·g–1 and 96.8% capacity retention over 1,000 cycles at a current density of 3 A·g–1. Our work provides an ideal structure design for conversion anodes or other electrode materials requiring a large volume change.


N-doped graphene iron oxides self-assembly Li-ion battery density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge financial supports from the National High-tech R&D Program of China (863 Program) (Nos. 2013AA032002 and 2015AA034601), China Iron & Steel Research Institute Group Foundation (No. SHI11AT0540A) and Advance Technology & Materials Co., Ltd Innovation Foundations (No. 2013JA02PYF).

Supplementary material

12274_2017_1502_MOESM1_ESM.pdf (2 mb)
Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes


  1. [1]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  2. [2]
    Croguennec, L.; Palacin, M. R. Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 3140–3156.CrossRefGoogle Scholar
  3. [3]
    Wang, H. L.; Dai, H. J. Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.CrossRefGoogle Scholar
  4. [4]
    Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.CrossRefGoogle Scholar
  5. [5]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  6. [6]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  7. [7]
    Tucek, J.; Kemp, K. C.; Kim, K. S.; Zboril, R. Iron-oxidesupported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 2014, 8, 7571–7612.CrossRefGoogle Scholar
  8. [8]
    Zhang, H. W.; Zhou, L.; Noonan, O.; Martin, D. J.; Whittaker, A. K.; Yu, C. Z. Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 2014, 24, 4337–4342.CrossRefGoogle Scholar
  9. [9]
    Yang, Y. Q.; Zhang, J. N.; Wu, X. C.; Fu, Y. S.; Wu, H. X.; Guo, S. W. Composites of boron-doped carbon nanosheets and iron oxide nanoneedles: Fabrication and lithium ion storage performance. J. Mater. Chem. A 2014, 2, 9111–9117.CrossRefGoogle Scholar
  10. [10]
    Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145–E149.CrossRefGoogle Scholar
  11. [11]
    Jia, X. L.; Cheng, Y. H.; Lu, Y. F.; Wei, F. Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials. ACS Nano 2014, 8, 9265–9273.CrossRefGoogle Scholar
  12. [12]
    Chen, S. Q.; Bao, P. T.; Wang, G. X. Synthesis of Fe2O3–CNT–graphene hybrid materials with an open threedimensional nanostructure for high capacity lithium storage. Nano Energy 2013, 2, 425–434.CrossRefGoogle Scholar
  13. [13]
    Chen, M. H.; Liu, J. L.; Chao, D. L.; Wang, J.; Yin, J. H.; Lin, J. Y.; Fan, H. J.; Shen, Z. X. Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 2014, 9, 364–372.CrossRefGoogle Scholar
  14. [14]
    Sun, Z. Y.; Xie, K. P.; Li, Z. A.; Sinev, I.; Ebbinghaus, P.; Erbe, A.; Farle, M.; Schuhmann, W.; Muhler, M.; Ventosa, E. Hollow and yolk-shell iron oxide nanostructures on fewlayer graphene in Li-ion batteries. Chem.—Eur. J. 2014, 20, 2022–2030.CrossRefGoogle Scholar
  15. [15]
    Hu, J. T.; Zheng, J. X.; Tian, L. L.; Duan, Y. D.; Lin, L. P.; Cui, S. H.; Peng, H.; Liu, T. C.; Guo, H.; Wang, X. W. et al. A core–shell nanohollow-γ-Fe2O3@graphene hybrid prepared through the kirkendall process as a high performance anode material for lithium ion batteries. Chem. Commun. 2015, 51, 7855–7858.CrossRefGoogle Scholar
  16. [16]
    An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250–6256.CrossRefGoogle Scholar
  17. [17]
    Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.CrossRefGoogle Scholar
  18. [18]
    Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3d graphene foams cross-linked with preencapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909–2914.CrossRefGoogle Scholar
  19. [19]
    Yu, S. H.; Conte, D. E.; Baek, S.; Lee, D. C.; Park, S. K.; Lee, K. J.; Piao, Y. Z.; Sung, Y. E.; Pinna, N. Structureproperties relationship in iron oxide-reduced graphene oxide nanostructures for Li-ion batteries. Adv. Funct. Mater. 2013, 23, 4293–4305.CrossRefGoogle Scholar
  20. [20]
    Wang, H. W.; Xu, Z. J.; Yi, H.; Wei, H. G.; Guo, Z. H.; Wang, X. F. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86–96.CrossRefGoogle Scholar
  21. [21]
    Zhao, B. T.; Zheng, Y.; Ye, F.; Deng, X.; Xu, X. M.; Liu, M. L.; Shao, Z. P. Multifunctional iron oxide nanoflake/ graphene composites derived from mechanochemical synthesis for enhanced lithium storage and electrocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 14446–14455.CrossRefGoogle Scholar
  22. [22]
    Lee, K. S.; Park, S.; Lee, W.; Yoon, Y. S. Hollow nanobarrels of α-Fe2O3 on reduced graphene oxide as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2027–2034.CrossRefGoogle Scholar
  23. [23]
    Pan, L.; Zhu, X. D.; Xie, X. M.; Liu, Y. T. Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: Hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater. 2015, 25, 3341–3350.CrossRefGoogle Scholar
  24. [24]
    Li, Q.; Mahmood, N.; Zhu, J. H.; Hou, Y. L.; Sun, S. H. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 2014, 9, 668–683.CrossRefGoogle Scholar
  25. [25]
    Wang, Z. Y.; Liu, C. J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy 2015, 11, 277–293.CrossRefGoogle Scholar
  26. [26]
    Wu, S. P.; Xu, R.; Lu, M. J.; Ge, R. Y.; Iocozzia, J.; Han, C. P.; Jiang, B. B.; Lin, Z. Q. Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500400.CrossRefGoogle Scholar
  27. [27]
    Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502–510.CrossRefGoogle Scholar
  28. [28]
    Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 2016, 9, 2904–2911.CrossRefGoogle Scholar
  29. [29]
    Wang, D. H.; Kou, R.; Choi, D.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L. et al. Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electrochemical energy storage. ACS Nano 2010, 4, 1587–1595.CrossRefGoogle Scholar
  30. [30]
    Li, X. L.; Qi, W.; Mei, D. H.; Sushko, M. L.; Aksay, I.; Liu, J. Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxidegraphene nanocomposites. Adv. Mater. 2012, 24, 5136–5141.CrossRefGoogle Scholar
  31. [31]
    Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249.CrossRefGoogle Scholar
  32. [32]
    Liu, S. H.; Dong, Y. F.; Zhao, C. T.; Zhao, Z. B.; Yu, C.; Wang, Z. Y.; Qiu, J. S. Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for longlife lithium storage and efficient oxygen reduction. Nano Energy 2015, 12, 578–587.CrossRefGoogle Scholar
  33. [33]
    Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098.CrossRefGoogle Scholar
  34. [34]
    Wang, X.; Cao, X. Q.; Bourgeois, L.; Guan, H.; Chen, S. M.; Zhong, Y. T.; Tang, D. M.; Li, H. Q.; Zhai, T. Y.; Li, L. et al. N-doped graphene-SnO2 sandwich paper for highperformance lithium-ion batteries. Adv. Funct. Mater. 2012, 22, 2682–2690.CrossRefGoogle Scholar
  35. [35]
    Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogendoped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.CrossRefGoogle Scholar
  36. [36]
    Li, X. L.; Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944.CrossRefGoogle Scholar
  37. [37]
    Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  38. [38]
    Marsden, A. J.; Brommer, P.; Mudd, J. J.; Dyson, M. A.; Cook, R.; Asensio, M.; Avila, J.; Levy, A.; Sloan, J.; Quigley, D. et al. Effect of oxygen and nitrogen functionalization on the physical and electronic structure of graphene. Nano Res. 2015, 8, 2620–2635.CrossRefGoogle Scholar
  39. [39]
    Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.CrossRefGoogle Scholar
  40. [40]
    He, C. Y.; Wang, R. H.; Fu, H. G.; Shen, P. K. Nitrogenself-doped graphene as a high capacity anode material for lithium-ion batteries. J. Mater. Chem. 2013, 1, 14586–14591.CrossRefGoogle Scholar
  41. [41]
    Chang, Y. H.; Li, J.; Wang, B.; Luo, H.; He, H. Y.; Song, Q.; Zhi, L. J. Synthesis of 3d nitrogen-doped graphene/ Fe3O4 by a metal ion induced self-assembly process for high-performance li-ion batteries. J. Mater. Chem. 2013, 1, 14658–14665.CrossRefGoogle Scholar
  42. [42]
    Yang, L.; Guo, G. N.; Sun, H. J.; Shen, X. D.; Hu, J. H.; Dong, A. G.; Yang, D. the C and N sources to prepare yolk–shell Fe3O4@N-doped carbon nanoparticles and its high performance in lithium-ion battery. Electrochim. Acta 2016, 190, 797–803.CrossRefGoogle Scholar
  43. [43]
    Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.CrossRefGoogle Scholar
  44. [44]
    Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.CrossRefGoogle Scholar
  45. [45]
    Yun, S.; Lee, Y. C.; Park, H. S. Phase-controlled iron oxide nanobox deposited on hierarchically structured graphene networks for lithium ion storage and photocatalysis. Sci. Rep. 2016, 6, 19959.CrossRefGoogle Scholar
  46. [46]
    Yu, X. B.; Qu, B.; Zhao, Y.; Li, C. Y.; Chen, Y. J.; Sun, C. W.; Gao, P.; Zhu, C. L. Growth of hollow transition metal (Fe, Co, Ni) oxide nanoparticles on graphene sheets through kirkendall effect as anodes for high-performance lithium-ion batteries. Chem.—Eur. J. 2016, 22, 1638–1645.CrossRefGoogle Scholar
  47. [47]
    Zhang, Z. H.; Wang, F.; An, Q.; Li, W.; Wu, P. Y. Synthesis of graphene@ Fe3O4@C core–shell nanosheets for highperformance lithium ion batteries. J. Mater. Chem. 2015, 3, 7036–7043.CrossRefGoogle Scholar
  48. [48]
    Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.CrossRefGoogle Scholar
  49. [49]
    Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706–1717.CrossRefGoogle Scholar
  50. [50]
    Liu, Y. P.; Huang, K.; Luo, H.; Li, H. X.; Qi, X.; Zhong, J. X. Nitrogen-doped graphene-Fe3O4 architecture as anode material for improved Li-ion storage. RSC Adv. 2014, 4, 17653–17659.CrossRefGoogle Scholar
  51. [51]
    Qin, G. H.; Fang, Z. W.; Wang, C. Y. Template free construction of a hollow Fe3O4 architecture embedded in an N-doped graphene matrix for lithium storage. Dalton Trans. 2015, 44, 5735–5745.CrossRefGoogle Scholar
  52. [52]
    Lu, X. Y.; Wang, R. H.; Bai, Y.; Chen, J. J.; Sun, J. Facile preparation of a three-dimensional Fe3O4/macroporous graphene composite for high-performance li storage. J. Mater. Chem. 2015, 3, 12031–12037.CrossRefGoogle Scholar
  53. [53]
    Sakthivel, T.; Gunasekaran, V.; Kim, S. J. Effect of oxygenated functional groups on the photoluminescence properties of graphene-oxide nanosheets. Mater. Sci. Semicond. Process. 2014, 19, 174–178.CrossRefGoogle Scholar
  54. [54]
    Tang, L. H.; Wang, Y.; Li, Y. M.; Feng, H. B.; Lu, J.; Li, J. H. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19, 2782–2789.CrossRefGoogle Scholar
  55. [55]
    Sun, L.; Wang, L.; Tian, C. G.; Tan, T. X.; Xie, Y.; Shi, K. Y.; Li, M. T.; Fu, H. G. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv. 2012, 2, 4498–4506.CrossRefGoogle Scholar
  56. [56]
    Chen, P.; Xiao, T. Y.; Qian, Y. H.; Li, S. S.; Yu, S. H. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 2013, 25, 3192–3196.Google Scholar
  57. [57]
    Li, L.; Kovalchuk, A.; Fei, H. L.; Peng, Z. W.; Li, Y. L.; Kim, N. D.; Xiang, C. S.; Yang, Y.; Ruan, G. D.; Tour, J. M. Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv. Energy Mater. 2015, 5, 1500171.CrossRefGoogle Scholar
  58. [58]
    Jiang, X.; Yang, X. L.; Zhu, Y. H.; Yao, Y. F.; Zhao, P.; Li, C. Z. Graphene/carbon-coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J. Mater. Chem. 2015, 3, 2361–2369.CrossRefGoogle Scholar
  59. [59]
    Yang, S. B.; Sun, Y.; Chen, L.; Hernandez, Y.; Feng, X. L.; Mü llen, K. Porous iron oxide ribbons grown on graphene for high-performance lithium storage. Sci. Rep. 2012, 2, 427.CrossRefGoogle Scholar
  60. [60]
    Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.CrossRefGoogle Scholar
  61. [61]
    McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  62. [62]
    Su, J.; Cao, M. H.; Ren, L.; Hu, C. W. Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469–14477.CrossRefGoogle Scholar
  63. [63]
    Segall, M. D.; Philip, J. D. L.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002, 14, 2717–2744.Google Scholar
  64. [64]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  65. [65]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wen Qi
    • 1
  • Xuan Li
    • 2
  • Hui Li
    • 3
  • Weikang Wu
    • 3
  • Pei Li
    • 2
  • Ying Wu
    • 1
  • Chunjiang Kuang
    • 1
  • Shaoxiong Zhou
    • 1
  • Xiaolin Li
    • 4
  1. 1.Beijing Key Laboratory of Energy Nanomaterials, Advance Technology & Materials Co., LtdChina Iron & Steel Research Institute GroupBeijingChina
  2. 2.School of Materials Science and EngineeringTianjin UniversityTianjinChina
  3. 3.Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of EducationShandong UniversityJinanChina
  4. 4.Department of Stationary Energy StoragePacific Northwest National LaboratoryRichlandUSA

Personalised recommendations