Skip to main content
Log in

Electrophysiological assessment of primary cortical neurons genetically engineered using iron oxide nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript


The development of safe technologies to genetically modify neurons is of great interest in regenerative neurology, for both translational and basic science applications. Such approaches have conventionally been heavily reliant on viral transduction methods, which have safety and production limitations. Magnetofection (magnet-assisted gene transfer using iron oxide nanoparticles as vectors) has emerged as a highly promising non-viral alternative for safe and reproducible genetic modification of neurons. Despite the high potential of this technology, there is an important gap in our knowledge of the safety of this approach, namely, whether it alters neuronal function in adverse ways, such as by altering neuronal excitability and signaling. We have investigated the effects of magnetofection in primary cortical neurons by examining neuronal excitability using the whole cell patch clamp technique. We found no evidence that magnetofection alters the voltage-dependent sodium and potassium ionic currents that underpin excitability. Our study provides important new data supporting magnetofection as a safe technology for bioengineering of neuronal cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Björklund, A.; Stenevi, U. Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol. Rev. 1979, 59, 62–100.

    Google Scholar 

  2. Tuszynski, M. H.; Steward, O. Concepts and methods for the study of axonal regeneration in the CNS. Neuron 2012, 74, 777–791.

    Article  Google Scholar 

  3. Karra, D.; Dahm, R. Transfection techniques for neuronal cells. J. Neurosci. 2010, 30, 6171–6177.

    Article  Google Scholar 

  4. Washbourne, P.; McAllister, A. K. Techniques for gene transfer into neurons. Curr. Opin. Neurobiol. 2002, 12, 566–573.

    Article  Google Scholar 

  5. Lentz, T. B.; Gray, S. J.; Samulski, R. J. Viral vectors for gene delivery to the central nervous system. Neurobiol. Dis. 2012, 48, 179–188.

    Article  Google Scholar 

  6. Schwerdt, J. I.; Goya, G. F.; Calatayud, M. P.; Hereñú, C. B.; Reggiani, P. C.; Goya, R. G. Magnetic field-assisted gene delivery: Achievements and therapeutic potential. Curr. Gene Ther. 2012, 12, 116–126.

    Article  Google Scholar 

  7. Fernandes, A. R.; Chari, D. M. Part II: Functional delivery of a neurotherapeutic gene to neural stem cells using minicircle DNA and nanoparticles: Translational advantages for regenerative neurology. J. Control. Release 2016, 238, 300–310.

    Article  Google Scholar 

  8. Fallini, C.; Bassell, G. J.; Rossoll, W. High-efficiency transfection of cultured primary motor neurons to study protein localization, trafficking, and function. Mol. Neurodegener. 2010, 5, 17.

    Article  Google Scholar 

  9. Wang, R. Z.; Palavicini, J. P.; Wang, H. J.; Maiti, P.; Bianchi, E.; Xu, S. H.; Lloyd, B. N.; Dawson-Scully, K.; Kang, D. E.; Lakshmana, M. K. RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 2014, 69, 169–179.

    Article  Google Scholar 

  10. Buerli, T.; Pellegrino, C.; Baer, K.; Lardi-Studler, B.; Chudotvorova, I.; Fritschy, J.-M.; Medina, I.; Fuhrer, C. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat. Protoc. 2007, 2, 3090–3101.

    Article  Google Scholar 

  11. Petters, C.; Dringen, R. Accumulation of iron oxide nanoparticles by cultured primary neurons. Neurochem. Int. 2015, 81, 1–9.

    Article  Google Scholar 

  12. Gramowski, A.; Flossdorf, J.; Bhattacharya, K.; Jonas, L.; Lantow, M.; Rahman, Q.; Schiffmann, D.; Weiss, D. G.; Dopp, E. Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips. Environ. Health Perspect. 2010, 118, 1363–1369.

    Article  Google Scholar 

  13. Liu, Z. W.; Ren, G. G.; Zhang, T.; Yang, Z. Action potential changes associated with the inhibitory effects on voltagegated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology 2009, 264, 179–184.

    Article  Google Scholar 

  14. Brewer, G. J. Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J. Neurosci. Res. 1995, 42, 674–683.

    Article  Google Scholar 

  15. Jenkins, S. I.; Weinberg, D.; Al-Shakli, A. F.; Fernandes, A. R.; Yiu, H. H. P.; Telling, N. D.; Roach, P.; Chari, D. M. “Stealth” nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEGbased neurotherapeutics. J. Control. Release 2016, 224, 136–145.

    Article  Google Scholar 

  16. Jenkins, S. I.; Pickard, M. R.; Furness, D. N.; Yiu, H. H. P.; Chari, D. M. Differences in magnetic particle uptake by CNS neuroglial subclasses: Implications for neural tissue engineering. Nanomedicine 2013, 8, 951–968.

    Article  Google Scholar 

  17. Jenkins, S. I.; Yiu, H. H. P.; Rosseinsky, M. J.; Chari, D. M. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: Progress and challenges. Mol. Cell. Ther. 2014, 2, 23.

    Article  Google Scholar 

  18. Pinkernelle, J.; Calatayud, P.; Goya, G. F.; Fansa, H.; Keilhoff, G. Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci. 2012, 13, 32.

    Article  Google Scholar 

  19. Steinlein, O. K. Genetic mechanisms that underlie epilepsy. Nat. Rev. Neurosci. 2004, 5, 400–408.

    Article  Google Scholar 

  20. Pickard, M. R.; Adams, C. F.; Barraud, P.; Chari, D. M. Using magnetic nanoparticles for gene transfer to neural stem cells: Stem cell propagation method influences outcomes. J. Funct. Biomater. 2015, 6, 259–276.

    Article  Google Scholar 

  21. Jenkins, S. I.; Pickard, M. R.; Chari, D. M. Magnetic nanoparticle mediated gene delivery in oligodendroglial cells: A comparison of differentiated cells versus precursor forms. Nano Life 2013, 3, 1243001.

    Article  Google Scholar 

  22. Jenkins, S. I.; Roach, P.; Chari, D. M. Development of a nanomaterial bio-screening platform for neurological applications. Nanomedicine 2015, 11, 77–87.

    Article  Google Scholar 

  23. Murphy, S. Generation of astrocyte cultures from normal and neoplastic central nervous system. In Methods in Neurosciences; Conn, P. M., Ed.; Academic Press: San Diego, CA, 1990; pp 33–47.

  24. Evans, M. S.; Collings, M. A.; Brewer, G. J. Electrophysiology of embryonic, adult and aged rat hippocampal neurons in serum-free culture. J. Neurosci. Methods 1998, 79, 37–46.

    Article  Google Scholar 

  25. Kivell, B. M.; McDonald, F. J.; Miller, J. H. Serum-free culture of rat post-natal and fetal brainstem neurons. Dev. Brain Res. 2000, 120, 199–210.

    Article  Google Scholar 

  26. Langan, T. J.; Slater, M. C.; Kelly, K. Novel relationships of growth factors to the G1/S transition in cultured astrocytes from rat forebrain. Glia 1994, 10, 30–39.

    Article  Google Scholar 

  27. Ahlemeyer, B.; Kölker, S.; Zhu, Y.; Hoffmann, G. F.; Krieglstein, J. Cytosine arabinofuranoside-induced activation of astrocytes increases the susceptibility of neurons to glutamate due to the release of soluble factors. Neurochem. Int. 2003, 42, 567–581.

    Article  Google Scholar 

  28. Geller, H. M.; Cheng, K. Y.; Goldsmith, N. K.; Romero, A. A.; Zhang, A. L.; Morris, E. J.; Grandison, L. Oxidative stress mediates neuronal DNA damage and apoptosis in response to cytosine arabinoside. J. Neurochem. 2001, 78, 265–275.

    Article  Google Scholar 

Download references


This work was funded by Iraqi ministry of higher education (Baghdad University). S. I. J. was funded by an Engineering and Physical Sciences Research Council (EPSRC; UK) Engineering Tissue Engineering and Regenerative Medicine (E-TERM) Landscape Fellowship (No. EP/I017801/1).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Divya M. Chari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, M.G., Al-Shakli, A., Jenkins, S.I. et al. Electrophysiological assessment of primary cortical neurons genetically engineered using iron oxide nanoparticles. Nano Res. 10, 2881–2890 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: