Nano Research

, Volume 10, Issue 5, pp 1560–1583 | Cite as

Recent progress in flexible and wearable bio-electronics based on nanomaterials

  • Yanbing Yang
  • Xiangdong Yang
  • Yaning Tan
  • Quan Yuan
Review Article


Flexible and stretchable biosensors that can monitor and quantify the electrical or chemical signals generated by specific microenvironments have attracted a great deal of attention. Wearable biosensors that can be intimately attached to skin or tissue provide a new opportunity for medical diagnostics and therapy. In recent years, there has been enormous progress in device integration and the design of materials and manufacturing processes for flexible and stretchable systems. Here, we describe the most recent developments in nanomaterials employed in flexible and stretchable biosensors. We review successful examples of such biosensors used for the detection of vital physiological and biological markers such as gas released from organisms. Furthermore, we provide a detailed overview of recent achievements regarding integrated platforms that include multifunctional nanomaterials. The issues and challenges related to the effective integration of multifunctional nanomaterials in bio-electronics are also discussed.


flexible biosensor electronics nanostructured materials integrated devices graphene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51272186, 21422105, and 21675120), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 201220), and Ten Thousand Talents Program for Young Talents.


  1. [1]
    Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–526.CrossRefGoogle Scholar
  2. [2]
    Tee, B. C.-K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.CrossRefGoogle Scholar
  3. [3]
    Park, S.; Wang, G.; Cho, B.; Kim, Y.; Song, S.; Ji, Y.; Yoon, M.-H.; Lee, T. Flexible molecular-scale electronic devices. Nat. Nanotechnol. 2012, 7, 438–442.CrossRefGoogle Scholar
  4. [4]
    Trung, T. Q.; Lee N.-E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 2016, 28, 4338–4372.CrossRefGoogle Scholar
  5. [5]
    Viventi, J.; Kim, D.-H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y.-S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S.-W.; Vanleer, A. C. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599–1607.CrossRefGoogle Scholar
  6. [6]
    Nguyen, T. D.; Deshmukh, N.; Nagarah, J. M.; Kramer, T.; Purohit, P. K.; Berry M. J.; McAlpine, M. C. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 2012, 7, 587–593.CrossRefGoogle Scholar
  7. [7]
    Rim, Y. S.; Bae, S.-H.; Chen, H. J.; De Marco, N.; Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 2016, 28, 4415–4440.CrossRefGoogle Scholar
  8. [8]
    Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395.CrossRefGoogle Scholar
  9. [9]
    Salvatore, G. A.; Münzenrieder, N.; Kinkeldei, T.; Petti, L.; Zysset, C.; Strebel, I.; Büthe, L.; Tröster, G. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 2014, 5, 2982.CrossRefGoogle Scholar
  10. [10]
    Mannsfeld, S. C. B.; Tee, B. C.-K.; Stoltenberg, R. M.; Chen, C. V. H.-H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N. Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.CrossRefGoogle Scholar
  11. [11]
    Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.Google Scholar
  12. [12]
    Ramuz, M.; Tee, B. C.-K.; Tok, J. B.-H.; Bao, Z. N. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 2012, 24, 3223–3227.CrossRefGoogle Scholar
  13. [13]
    Jung, S.; Lee, J.; Hyeon, T.; Lee, M.; Kim, D.-H. Fabricbased integrated energy devices for wearable activity monitors. Adv. Mater. 2014, 26, 6329–6334.CrossRefGoogle Scholar
  14. [14]
    Pang, C.; Koo, J. H.; Nguyen, A.; Caves, J. M.; Kim, M.-G.; Chortos, A.; Kim, K.; Wang, P. J.; Tok, J. B.-H.; Bao, Z. N. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 2015, 27, 634–640.CrossRefGoogle Scholar
  15. [15]
    Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.CrossRefGoogle Scholar
  16. [16]
    Kim, R.-H.; Kim, D.-H.; Xiao, J. L.; Kim, B. H.; Park, S.-I.; Panilaitis, B.; Ghaffari, R.; Yao, J. M.; Li, M.; Liu, Z. J. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 2010, 9, 929–937.CrossRefGoogle Scholar
  17. [17]
    Guo, Y. L.; Wu, B.; Liu, H. T.; Ma, Y. Q.; Yang, Y.; Zheng, J.; Gui, Y.; Liu, Y. Q. Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors. Adv. Mater. 2011, 23, 4626–4630.CrossRefGoogle Scholar
  18. [18]
    Dong, X. C.; Shi, Y. M.; Huang, W.; Chen, P.; Li, L.-J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 2010, 22, 1649–1653.CrossRefGoogle Scholar
  19. [19]
    Xu, G. Y.; Abbott, J.; Qin, L.; Yeung, K. Y. M.; Song, Y.; Yoon, H. S.; Kong, J.; Ham, D. Electrophoretic and fieldeffect graphene for all-electrical DNA array technology. Nat. Commun. 2014, 5, 4866.CrossRefGoogle Scholar
  20. [20]
    He, Q. Y.; Sudibya, H. G.; Yin, Z. Y.; Wu, S. X.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 2010, 4, 3201–3208.CrossRefGoogle Scholar
  21. [21]
    Feng, L. Y.; Chen, Y.; Ren, J. S.; Qu, X. G. A graphene functionalized electrochemical aptasensor for selective labelfree detection of cancer cells. Biomaterials 2011, 32, 2930–2937.CrossRefGoogle Scholar
  22. [22]
    Zhang, M.; Liao, C. Z.; Mak, C. H.; You, P.; Mak, C. L.; Yan, F. Highly sensitive glucose sensors based on enzymemodified whole-graphene solution-gated transistors. Sci. Rep. 2015, 5, 8311.CrossRefGoogle Scholar
  23. [23]
    Zhang, M.; Liao, C. Z.; Yao, Y. L.; Liu, Z. K.; Gong, F. F.; Yan, F. High-performance dopamine sensors based on wholegraphene solution-gated transistors. Adv. Funct. Mater. 2014, 24, 978–985.CrossRefGoogle Scholar
  24. [24]
    Yan, F.; Zhang, M.; Li, J. H. Solution-gated graphene transistors for chemical and biological sensors. Adv. Healthc. Mater. 2014, 3, 313–331.CrossRefGoogle Scholar
  25. [25]
    Deng, W.; Zhang, X. J.; Huang, L. M.; Xu, X. Z.; Wang, L.; Wang, J. C.; Shang, Q. X.; Lee, S.-T.; Jie, J. S. Aligned single-crystalline perovskite microwire arrays for highperformance flexible image sensors with long-term stability. Adv. Mater. 2016, 28, 2201–2208.CrossRefGoogle Scholar
  26. [26]
    Shin, S. R.; Farzad, R.; Tamayol, A.; Manoharan, V.; Mostafalu, P.; Zhang, Y. S.; Akbari, M.; Jung, S. M.; Kim, D.; Comotto, M. et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater. 2016, 28, 3280–3289.CrossRefGoogle Scholar
  27. [27]
    Bhattacharyya, D.; Senecal, K.; Marek, P.; Senecal, A.; Gleason, K. K. High surface area flexible chemiresistive biosensor by oxidative chemical vapor deposition. Adv. Funct. Mater. 2011, 21, 4328–4337.CrossRefGoogle Scholar
  28. [28]
    Baeg, K.-J.; Caironi, M.; Noh, Y.-Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Adv. Mater. 2013, 25, 4210–4244.CrossRefGoogle Scholar
  29. [29]
    Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.Google Scholar
  30. [30]
    Chen, H. L.; Cheng, N. Y.; Ma, W.; Li, M. L.; Hu, S. X.; Gu, L.; Meng, S.; Guo, X. F. Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors. ACS Nano 2016, 10, 436–445.CrossRefGoogle Scholar
  31. [31]
    Kim, R. H.; Kim, H. J.; Bae, I.; Hwang, S. K.; Velusamy, D. B.; Cho, S. M.; Takaishi, K.; Muto, T.; Hashizume, D.; Uchiyama, M. et al. Non-volatile organic memory with submillimetre bending radius. Nat. Commun. 2014, 5, 3583.Google Scholar
  32. [32]
    Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404.CrossRefGoogle Scholar
  33. [33]
    Irimia-Vladu, M.; Troshin, P. A.; Reisinger, M.; Shmygleva, L.; Kanbur, Y.; Schwabegger, G.; Bodea, M.; Schwödiauer, R.; Mumyatov, A.; Fergus, J. W. et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 2010, 20, 4069–4076.CrossRefGoogle Scholar
  34. [34]
    Takahashi, T.; Takei, K.; Gillies, A. G.; Fearing, R. S.; Javey, A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett. 2011, 11, 5408–5413.CrossRefGoogle Scholar
  35. [35]
    Lau, P. H.; Takei, K.; Wang, C.; Ju, Y.; Kim, J.; Yu, Z. B.; Takahashi, T.; Cho, G.; Javey, A. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 2013, 13, 3864–3869.CrossRefGoogle Scholar
  36. [36]
    Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors. Nat. Mater. 2013, 12, 403–409.CrossRefGoogle Scholar
  37. [37]
    Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.CrossRefGoogle Scholar
  38. [38]
    Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano 2013, 7, 8366–8378.CrossRefGoogle Scholar
  39. [39]
    Zhu, B. W.; Wang, H.; Leow, W. R.; Cai, Y. R.; Loh, X. J.; Han, M.-Y.; Chen, X. D. Silk fibroin for flexible electronic devices. Adv. Mater. 2016, 28, 4250–4265.CrossRefGoogle Scholar
  40. [40]
    Mannoor, M. S.; Tao, H.; Clayton, J. D.; Sengupta, A.; Kaplan, D. L.; Naik, R. R.; Verma, N.; Omenetto, F. G.; McAlphine, M. C. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 2012, 3, 763.CrossRefGoogle Scholar
  41. [41]
    Lee, H.; Choi, T. K.; Lee, Y. B.; Cho, H. R.; Ghaffari, R.; Wang, L.; Choi, H. J.; Chung, T. D.; Lu, N. S.; Hyeon, T. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016, 11, 566–572.CrossRefGoogle Scholar
  42. [42]
    Swisher, S. L.; Lin, M. C.; Liao, A.; Leeflang, E. J.; Khan, Y.; Pavinatto, F. J.; Mann, K.; Naujokas, A.; Young, D.; Roy, S. et al. Impedance sensing device enables early detection of pressure ulcers in vivo. Nat. Commun. 2015, 6, 6575.CrossRefGoogle Scholar
  43. [43]
    Wang, X. D.; Zhang, H. L.; Yu, R. M.; Dong, L.; Peng, D. F.; Zhang, A. H.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 2015, 27, 2324–2331.CrossRefGoogle Scholar
  44. [44]
    Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L. H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R. M. et al. High transconductance organic electrochemical transistors. Nat. Commun. 2013, 4, 2133.Google Scholar
  45. [45]
    Rim, Y. S.; Bae, S.-H.; Chen, H. J.; Yang, J. L.; Kim, J.; Andrews, A. M.; Weiss, P. S.; Yang, Y.; Tseng, H.-R. Printable ultrathin metal oxide semiconductor-based conformal biosensors. ACS Nano 2015, 9, 12174–12181.CrossRefGoogle Scholar
  46. [46]
    Liu, J.; Buchholz, B.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Adv. Mater. 2010, 22, 2333–2337.CrossRefGoogle Scholar
  47. [47]
    Lu, X. H.; Zhai, T.; Zhang, X. H.; Shen, Y. Q.; Yuan, L. Y.; Hu, B.; Gong, L.; Chen, J.; Gao, Y. H.; Zhou, J. et al. WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 2012, 24, 938–944.Google Scholar
  48. [48]
    Lin, P.; Luo, X. T.; Hsing, I.-M.; Yan, F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 2011, 23, 4035–4040.CrossRefGoogle Scholar
  49. [49]
    Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 2006, 18, 2807–2824.CrossRefGoogle Scholar
  50. [50]
    Wu, C. Z.; Wei, H.; Ning, B.; Xie, Y. New vanadium oxide nanostructures: Controlled synthesis and their smart electrical switching properties. Adv. Mater. 2010, 22, 1972–1976.CrossRefGoogle Scholar
  51. [51]
    Yan, J. Q.; Wang, T.; Wu, G. J.; Dai, W. L.; Guan, N. J.; Li, L. D.; Gong, J. L. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 2015, 27, 1580–1586.CrossRefGoogle Scholar
  52. [52]
    Pradhan, D.; Noroui, F.; Leung, K. T. High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl. Mater. Interfaces 2010, 2, 2409–2412.CrossRefGoogle Scholar
  53. [53]
    Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007.Google Scholar
  54. [54]
    Kim, M.-G.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382–388.CrossRefGoogle Scholar
  55. [55]
    Zhang, H.-X.; Feng, C.; Zhai, Y.-C.; Jiang, K.-L.; Li, Q.-Q.; Fan, S.-S. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries. Adv. Mater. 2009, 21, 2299–2304.CrossRefGoogle Scholar
  56. [56]
    Vanithakumari, S. C.; Nanda, K. K. A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors. Adv. Mater. 2009, 21, 3581–3584.Google Scholar
  57. [57]
    Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Commun. 2014, 5, 3132.Google Scholar
  58. [58]
    Yaman, M.; Khudiyev, T.; Ozgur, E.; Kanik, M.; Aktas, O.; Ozgur, E. O.; Deniz, H.; Korkut, E.; Bayindir, M. Arrays of indefinitely long uniform nanowires and nanotubes. Nat. Mater. 2011, 10, 494–501.CrossRefGoogle Scholar
  59. [59]
    Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986–994.CrossRefGoogle Scholar
  60. [60]
    Weisse, J. M.; KIm, D. R.; Lee, C. H.; Zheng, X. L. Vertical transfer of uniform silicon nanowire arrays via crack formation. Nano Lett. 2011, 11, 1300–1305.CrossRefGoogle Scholar
  61. [61]
    Xu, F.; Liu, W.; Zhu, Y. Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 2011, 5, 672–678.CrossRefGoogle Scholar
  62. [62]
    Jeon, D.-Y.; Pregl, S.; Park, S. J.; Baraban, L.; Cuniberti, G.; Mikolajick, T.; Weber, W. M. Scaling and graphical transport-map analysis of ambipolar schottky-barrier thinfilm transistors based on a parallel array of Si nanowires. Nano Lett. 2015, 15, 4578–4584.CrossRefGoogle Scholar
  63. [63]
    Li, B.-R.; Hsieh, Y.-J.; Chen, Y.-X.; Chung, Y.-T.; Pan, C.-Y.; Chen, Y.-T. An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. J. Am. Chem. Soc. 2013, 135, 16034–16037.CrossRefGoogle Scholar
  64. [64]
    Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.CrossRefGoogle Scholar
  65. [65]
    Shi, E. Z.; Li, H. B.; Yang, L.; Hou, J. F.; Li, Y. C.; Li, L.; Cao, A. Y.; Fang, Y. Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics. Adv. Mater. 2015, 27, 682–688.CrossRefGoogle Scholar
  66. [66]
    Liu, Z. F.; Jiao, L. Y.; Yao, Y. G.; Xian, X. J.; Zhang, J. Aligned, ultralong single-walled carbon nanotubes: From synthesis, sorting, to electronic devices. Adv. Mater. 2010, 22, 2285–2310.CrossRefGoogle Scholar
  67. [67]
    Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Hough, L. A.; Kikkawa, J. M.; Yodh, A. G. Carbon nanotube aerogels. Adv. Mater. 2007, 19, 661–664.CrossRefGoogle Scholar
  68. [68]
    Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.CrossRefGoogle Scholar
  69. [69]
    Yang, Y. B.; Li, P. X.; Wu, S. T.; Li, X. Y.; Shi, E. Z.; Shen, Q. C.; Wu, D. H.; Xu, W. J.; Cao, A. Y.; Yuan, Q. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage. Chem.—Eur. J. 2015, 21, 6157–6164.CrossRefGoogle Scholar
  70. [70]
    Yang, Y. B.; Shi, E. Z.; Li, P. X.; Wu, D. H.; Wu, S. T.; Shang, Y. Y.; Xu, W. J.; Cao, A. Y.; Yuan, Q. A compressible mesoporous SiO2 sponge supported by a carbon nanotube network. Nanoscale 2014, 6, 3585–3592.CrossRefGoogle Scholar
  71. [71]
    Kim, S. Y.; Park, S.; Park, H. W.; Park, D. H.; Jelong, Y.; Kim, D. H. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 2015, 27, 4178–4185.CrossRefGoogle Scholar
  72. [72]
    Shin, K.-Y.; Hong, J.-Y.; Jang, J. Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv. Mater. 2011, 23, 2113–2118.CrossRefGoogle Scholar
  73. [73]
    Zhang, L. M.; Diao, S.; Nie, Y. F.; Yan, K.; Liu, N.; Dai, B. Y.; Xie, Q.; Reina, A.; Kong, J.; Liu, Z. F. Photocatalytic patterning and modification of graphene. J. Am. Chem. Soc. 2011, 133, 2706–2713.CrossRefGoogle Scholar
  74. [74]
    Sun, J. Y.; Gao, T.; Song, X. J.; Zhao, Y. F.; Lin, Y. W.; Wang, H. C.; Ma, D. L.; Chen, Y. B.; Xiang, W. F.; Wang, J. et al. Direct growth of high-quality graphene on high-k dielectric SrTiO3 substrates. J. Am. Chem. Soc. 2014, 136, 6574–6577.CrossRefGoogle Scholar
  75. [75]
    Liao, L.; Peng, H. L.; Liu, Z. F. Chemistry makes graphene beyond graphene. J. Am. Chem. Soc. 2014, 136, 12194–12200.CrossRefGoogle Scholar
  76. [76]
    Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.CrossRefGoogle Scholar
  77. [77]
    Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.CrossRefGoogle Scholar
  78. [78]
    Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphenebased materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902.CrossRefGoogle Scholar
  79. [79]
    Wan, C. L.; Gu, X. K.; Dang, F.; Itoh, T.; Wang, Y. F.; Sasaki, H.; Kondo, M.; Koga, K. J.; Yabuki, K.; Snyder, G. J. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 2015, 14, 622–627.CrossRefGoogle Scholar
  80. [80]
    Georgious, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y.-J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.CrossRefGoogle Scholar
  81. [81]
    Zhang, Y.; Chang, T.-R.; Zhou, B.; Cui, Y.-T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.CrossRefGoogle Scholar
  82. [82]
    Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.CrossRefGoogle Scholar
  83. [83]
    Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical uses for 2D materials beyond graphene: Current advances and challenges ahead. Adv. Mater. 2016, 28, 6052–6074.CrossRefGoogle Scholar
  84. [84]
    Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.CrossRefGoogle Scholar
  85. [85]
    Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.CrossRefGoogle Scholar
  86. [86]
    Chen, Y.; Tan, C. L.; Zhang, H.; Wang, L. Z. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–2701.CrossRefGoogle Scholar
  87. [87]
    Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.CrossRefGoogle Scholar
  88. [88]
    Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 2014, 26, 2185–2204.CrossRefGoogle Scholar
  89. [89]
    Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.CrossRefGoogle Scholar
  90. [90]
    Wang, M.; Jang, S. K.; Jang, W.-J.; Kim, M.; Park, S.-Y.; Kim, S.-W.; Kahng, S.-J.; Choi, J.-Y.; Ruoff, R. S.; Song, Y. J. et al. A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 2013, 25, 2746–2752.Google Scholar
  91. [91]
    Liu, S.; Lu, B.; Zhao, Q.; Li, J.; Gao, T.; Chen, Y. B.; Zhang, Y. F.; Liu, Z. F.; Fan, Z. C.; Yang, F. H. et al. Boron nitride nanopores: Highly sensitive DNA single-molecule detectors. Adv. Mater. 2013, 25, 4549–4554.CrossRefGoogle Scholar
  92. [92]
    Wang, L. F.; Wu, B.; Jiang, L. L.; Chen, J. S.; Li, Y. T.; Guo, W.; Hu, P. G.; Liu, Y. Q. Growth and etching of monolayer hexagonal boron nitride. Adv. Mater. 2015, 27, 4858–4864.CrossRefGoogle Scholar
  93. [93]
    Sun, J.; Zheng, G. Y.; Lee, H.-W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.CrossRefGoogle Scholar
  94. [94]
    Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.CrossRefGoogle Scholar
  95. [95]
    Yuan, J. T.; Najmaei, S.; Zhang, Z. H.; Zhang, J.; Lei, S. D.; Ajayan, P. M.; Yakobson, B. I.; Lou, J. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus. ACS Nano 2015, 9, 555–563.CrossRefGoogle Scholar
  96. [96]
    Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’ Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.CrossRefGoogle Scholar
  97. [97]
    Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.CrossRefGoogle Scholar
  98. [98]
    Ling, Z.; Ren, C. E.; Zhao, M.-Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.CrossRefGoogle Scholar
  99. [99]
    Yin, H. B.; Zhu, J. P.; Guan, X. M.; Yang, Z. P.; Zhu, Y.; Zhao, H. Y.; Zhang, Z. Y.; Zhou, A. G.; Zhang, X.; Feng, C. H. et al. Effect of MXene (nano-Ti3C2) on early-age hydration of cement paste. J. Nanomater. 2015, 2015, Article ID430578.Google Scholar
  100. [100]
    Yan, W.; He, W.-Y.; Chu, Z.-D.; Liu, M. X.; Meng, L.; Dou, R.-F.; Zhang, Y. F.; Liu, Z. F.; Nie, J.-C.; He, L. Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun. 2013, 4, 2159.Google Scholar
  101. [101]
    Kuzum, D.; Takano, H.; Shim, E.; Reed, J. C.; Juul, H.; Richardson, A. G.; de Vries, J.; Bink, H.; Dichter, M. A.; Lucas, T. H. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 2014, 5, 5259.CrossRefGoogle Scholar
  102. [102]
    Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992–3006.CrossRefGoogle Scholar
  103. [103]
    Chen, J.-H.; Ishigami, M.; Jang, C.; Hines, D. R.; Ruhrer, M. S.; Williams, E. D. Printed graphene circuits. Adv. Mater. 2007, 19, 3623–3627.CrossRefGoogle Scholar
  104. [104]
    Avouris, P. Graphene: Electronic and photonic properties and devices. Nano Lett. 2010, 10, 4285–4294.CrossRefGoogle Scholar
  105. [105]
    Weiss, N. O.; Zhou, H. L.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene: An emerging electronic material. Adv. Mater. 2012, 24, 5782–5825.CrossRefGoogle Scholar
  106. [106]
    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.CrossRefGoogle Scholar
  107. [107]
    Kim, B. J.; Jang, H.; Lee, S.-K.; Hong, B. H.; Ahn, J.-H.; Cho, J. H. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 2010, 10, 3464–3466.CrossRefGoogle Scholar
  108. [108]
    Lee, S.-K.; Jang, H. Y.; Jang, S.; Choi, E.; Hong, B. H.; Lee, J.; Park, S.; Ahn, J.-H. All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 2012, 12, 3472–3476.CrossRefGoogle Scholar
  109. [109]
    Stine, R.; Robinson, J. T.; Sheehan, P. E.; Tamanaha, C. R. Real-time DNA detection using reduced graphene oxide field effect transistors. Adv. Mater. 2010, 22, 5297–5300.CrossRefGoogle Scholar
  110. [110]
    He, Q. Y.; Wu, S. X.; Yin, Z. Y.; Zhang, H. Graphene-based electronic sensors. Chem. Sci. 2012, 3, 1764–1772.CrossRefGoogle Scholar
  111. [111]
    Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.CrossRefGoogle Scholar
  112. [112]
    Mohanty, N.; Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008, 8, 4469–4476.CrossRefGoogle Scholar
  113. [113]
    Jiang, S.; Cheng, R.; Wang, X.; Xue, T.; Liu, Y.; Nel, A.; Huang, Y.; Duan, X. F. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat. Commun. 2013, 4, 2225.Google Scholar
  114. [114]
    Larisika, M.; Kotlowski, C.; Steininger, C.; Mastrogiacomo, R.; Pelosi, P.; Schütz, S.; Peteu, S. F.; Kleber, C.; Reiner-Rozman, C.; Nowak, C. et al. Electronic olfactory sensor based on A. mellifera odorant-binding protein 14 on a reduced graphene oxide field-effect transistor. Angew. Chem., Int. Ed. 2015, 54, 13245–13248.CrossRefGoogle Scholar
  115. [115]
    Choi, B. G.; Park, H. S.; Park, T. J.; Yang, M. H.; Kim, J. S.; Jang, S.-Y.; Heo, N. S.; Lee, S. Y.; Kong, J.; Hong, W. H. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 2010, 4, 2910–2918.CrossRefGoogle Scholar
  116. [116]
    Park, S. J.; Kwon, O. S.; Lee, S. H.; Song, H. S.; Park, T. H.; Jang, J. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 2012, 12, 5082–5090.CrossRefGoogle Scholar
  117. [117]
    An, J. H.; Park, S. J.; Kwon, O. S.; Bae, J.; Jang, J. Highperformance flexible graphene aptasensor for mercury detection in mussels. ACS Nano 2013, 7, 10563–10571.CrossRefGoogle Scholar
  118. [118]
    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–877.CrossRefGoogle Scholar
  119. [119]
    Talirz, L.; Ruffieux, P.; Fasel, R. On-surface synthesis of atomically precise graphene nanoribbons. Adv. Mater. 2016, 28, 6222–6231.CrossRefGoogle Scholar
  120. [120]
    Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y. Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190–194.CrossRefGoogle Scholar
  121. [121]
    Kwon, O. S.; Park, S. J.; Hong, J.-Y.; Han, A.-R.; Lee, J. S.; Lee, J. S.; Oh, J. H.; Jang, J. Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 2012, 6, 1486–1493.CrossRefGoogle Scholar
  122. [122]
    Lopez-Sanchez, O.; Lambke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.CrossRefGoogle Scholar
  123. [123]
    Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.CrossRefGoogle Scholar
  124. [124]
    He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thinfilm transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.CrossRefGoogle Scholar
  125. [125]
    Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. L. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NOat room temperature. Small 2012, 8, 63–67.CrossRefGoogle Scholar
  126. [126]
    Perkins, F. K.; Feriedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.CrossRefGoogle Scholar
  127. [127]
    Late, D. J.; Huang, Y.-K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thinlayered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.CrossRefGoogle Scholar
  128. [128]
    Lee, D.-W.; Lee, J.; Sohn, I. Y.; Kim, B.-Y.; Son, Y. M.; Bark, H.; Jung, J.; Choi, M.; Kim, T. H.; Lee, C. G. et al. Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization. Nano Res. 2015, 8, 2340–2350.CrossRefGoogle Scholar
  129. [129]
    Chen, M. K.; Nam, H.; Rokni, H.; Wi, S. J.; Yoon, J. S.; Chen, P. Y.; Kurabayashi, K.; Lu, W.; Liang, X. G. Nanoimprint-assisted shear exfoliation (NASE) for producing multilayer MoS2 structures as field-effect transistor channel arrays. ACS Nano 2015, 9, 8773–8785.CrossRefGoogle Scholar
  130. [130]
    Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003.CrossRefGoogle Scholar
  131. [131]
    Kim, J.; Lee, M.-S.; Jeon, S.; Kim, M.; Kim, S.; Kim, K.; Bien, F.; Hong, S. Y.; Park, J.-U. Highly transparent and stretchable field-effect transistor sensors using graphenenanowire hybrid nanostructures. Adv. Mater. 2015, 27, 3292–3297.CrossRefGoogle Scholar
  132. [132]
    Myung, S.; Solanki, A.; Kim, C.; Park, J.; Kim, K. S.; Lee, K.-B. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv. Mater. 2011, 23, 2221–2225.CrossRefGoogle Scholar
  133. [133]
    Xiao, F.; Li, Y. Q.; Zan, X. L.; Liao, K.; Xu, R.; Duan, H. W. Growth of metal-metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv. Funct. Mater. 2012, 22, 2487–2494.CrossRefGoogle Scholar
  134. [134]
    Kwon, O. S.; Lee, S. H.; Park, S. J.; An, J. H.; Song, H. S.; Kim, T.; Oh, J. H.; Bae, J.; Yoon, H.; Park, T. H. et al. Large-scale graphene micropattern nano-biohybrids: Highperformance transducers for FET-type flexible fluidic HIV immunoassays. Adv. Mater. 2013, 25, 4177–4185.CrossRefGoogle Scholar
  135. [135]
    Lee, H.; Choi, T. K.; Lee, Y. B.; Cho, H. R.; Ghaffari, R.; Wang, L.; Choi, H. J.; Chung, T. D.; Lu, N. S.; Hyeon, T. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016, 11, 566–572.CrossRefGoogle Scholar
  136. [136]
    Swisher, S. L.; Lin, M. C.; Liao, A.; Leeflang, E. J.; Khan, Y.; Pavinatto, F. J.; Mann, K.; Naujokas, A.; Young, D.; Roy, S. et al. Impedance sensing device enables early detection of pressure ulcers in vivo. Nat. Commun. 2015, 6, 6575.CrossRefGoogle Scholar
  137. [137]
    Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.CrossRefGoogle Scholar
  138. [138]
    Kim S. L.; Choi, K.; Tazebay, A.; Yu, C. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. ACS Nano 2014, 8, 2377–2386.CrossRefGoogle Scholar
  139. [139]
    Yang, P.-K.; Lin, L.; Yi, F.; Li, X. H.; Pradel, K. C.; Zi, Y. L.; Wu, C.-I.; He, J.-H.; Zhang, Y.; Wang Z. L. A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 2015, 27, 3817–3824.CrossRefGoogle Scholar
  140. [140]
    Li, Z. T.; Wang, Z. L. Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv. Mater. 2011, 23, 84–89.CrossRefGoogle Scholar
  141. [141]
    Kim, T.-I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R.-H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211–217.CrossRefGoogle Scholar
  142. [142]
    Jeon, J.; Lee, H.-B.-R.; Bao, Z. N. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 2013, 25, 850–855.CrossRefGoogle Scholar
  143. [143]
    Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 2016, 28, 4397–4414.CrossRefGoogle Scholar
  144. [144]
    Fukuda, K.; Takeda, Y.; Yoshimura, Y.; Shiwaku, R.; Tran, L. T.; Sekine T.; Mizukami, M.; Kumaki, D.; Tokito, S. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 2014, 5, 4147.Google Scholar
  145. [145]
    Chen, L. Y.; Tee, B. C.-K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H.-S. P.; McConnell, M. V.; Bao, Z. N. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028.CrossRefGoogle Scholar
  146. [146]
    Shin, G. C.; Yoon, C. H.; Bae, M. Y.; Kim, Y. C.; Hong, S. K.; Rogers, J. A.; Ha, J. S. Stretchable field-effect-transistor array of suspended SnO2 nanowires. Small 2011, 7, 1181–1185.CrossRefGoogle Scholar
  147. [147]
    Liu, X.; Long, Y.-Z.; Liao, L.; Duan, X. F.; Fan, Z. Y. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 2012, 6, 1888–1900.CrossRefGoogle Scholar
  148. [148]
    Wu, W. W.; Bai, S.; Yuan, M. M.; Qin, Y.; Wang, Z. L.; Jing, T. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 2012, 6, 6231–6235.CrossRefGoogle Scholar
  149. [149]
    Wei, D. C.; Liu, Y. Q. Controllable synthesis of graphene and its applications. Adv. Mater. 2010, 22, 3225–3241.CrossRefGoogle Scholar
  150. [150]
    Zhou, Y.; Loh, K. P. Making patterns on graphene. Adv. Mater. 2010, 22, 3615–3620.CrossRefGoogle Scholar
  151. [151]
    Zhu, Y.; James, D. K.; Tour, J. M. New routes to graphene, graphene oxide and their related applications. Adv. Mater. 2012, 24, 4924–4955.CrossRefGoogle Scholar
  152. [152]
    Hwang, S.-W.; Song, J.-K.; Huang, X.; Cheng, H. Y.; Kang, S.-K.; Kim, B. H.; Kim J.-H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.CrossRefGoogle Scholar
  153. [153]
    Yin, L.; Huang, X.; Xu, H. X.; Zhang, Y. F.; Lam, J.; Cheng, J. J.; Rogers, J. A. Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 2014, 26, 3879–3884.CrossRefGoogle Scholar
  154. [154]
    Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.CrossRefGoogle Scholar
  155. [155]
    Kim, S.-K.; Koo, H.-J.; Lee, A.; Braun, P. V. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv. Mater. 2014, 26, 5108–5112.CrossRefGoogle Scholar
  156. [156]
    Yang, Z. B.; Deng, J.; Sun, H.; Ren, J.; Pan, S. W.; Peng, H. S. Self-powered energy fiber: Energy conversion in the sheath and storage in the core. Adv. Mater. 2014, 26, 7038–7042.CrossRefGoogle Scholar
  157. [157]
    Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yanbing Yang
    • 1
  • Xiangdong Yang
    • 1
  • Yaning Tan
    • 1
  • Quan Yuan
    • 1
  1. 1.Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina

Personalised recommendations