Skip to main content

Intercalated 2D nanoclay for emerging drug delivery in cancer therapy

Abstract

Natural two-dimensional (2D) kaolinite nanoclay has been incorporated into an emerging drug delivery system. The basal spacing of the kaolinite nanoclay was expanded from 0.72 to 4.16 nm through the intercalation of various organic guest species of different chain lengths, which can increase the efficiency in drug delivery and reduce the toxicity of doxorubicin (DOX). Original kaolinite (Kaolin) and the Kaolin intercalation compounds exhibited a high level of biocompatibility and very low toxicity towards cells of pancreatic cancer, gastric cancer, prostate cancer, breast cancer, colorectal cancer, esophageal cancer, and differentiated thyroid cancer. However, lung cancer and hepatocellular cancer cells need more strict compositional, structural, and morphological modulations for drug delivery carriers. DOX-Kaolin and the DOX-Kaolin intercalation compounds showed dramatically faster drug release in moderately acidic solution than in neutral condition, and exhibited enhanced therapeutic effects against ten model cancer cell cultures in a dose-dependent manner. The use of 2D nanoclay materials for a novel drug delivery system could feasibly pave a way towards high-performance nanotherapeutics, with superior antitumor efficacy and significantly reduced side effects.

This is a preview of subscription content, access via your institution.

References

  1. Dawson, J. I.; Oreffo, R. O. C. Clay: New opportunities for tissue regeneration and biomaterial design. Adv. Mater. 2013, 25, 4069–4086.

    Article  Google Scholar 

  2. Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.

    Google Scholar 

  3. Kemp, J. A.; Shim, M. S.; Heo, C. Y.; Kwon, Y. J. “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 2016, 98, 3–18.

    Article  Google Scholar 

  4. Damitz, R.; Chauhan, A. Parenteral emulsions and liposomes to treat drug overdose. Adv. Drug Deliv. Rev. 2015, 90, 12–23.

    Article  Google Scholar 

  5. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827.

    Article  Google Scholar 

  6. Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

    Article  Google Scholar 

  7. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metalorganic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.

    Article  Google Scholar 

  8. Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11.

    Article  Google Scholar 

  9. Park, J. H.; Saravanakumar, G.; Kim, K.; Kwon, I. C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev. 2010, 62, 28–41.

    Article  Google Scholar 

  10. Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265.

    Article  Google Scholar 

  11. Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878.

    Article  Google Scholar 

  12. Xu, C. J.; Sun, S. H. New forms of superparamagnetic nanoparticles for biomedical applications. Adv. Drug Deliv. Rev. 2013, 65, 732–743.

    Article  Google Scholar 

  13. Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Anarjan, N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res. 2016, 9, 2203–2225.

    Article  Google Scholar 

  14. Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10905.

    Article  Google Scholar 

  15. Bussy, C.; Methven, L.; Kostarelos, K. Hemotoxicity of carbon nanotubes. Adv. Drug Deliv. Rev. 2013, 65, 2127–2134.

    Article  Google Scholar 

  16. Chen, Y.; Tan, C. L.; Zhang, H.; Wang, L. Z. Twodimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–2701.

    Article  Google Scholar 

  17. Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

    Article  Google Scholar 

  18. Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.

    Article  Google Scholar 

  19. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288.

    Article  Google Scholar 

  20. Yu, M. H.; Niu, Y. T.; Zhang, J.; Zhang, H. W.; Yang, Y. N.; Taran, E.; Jambhrunkar, S.; Gu, W. Y.; Thorn, P.; Yu, C. Z. Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Res. 2016, 9, 291–305.

    Article  Google Scholar 

  21. Luo, G. F.; Chen, W. H.; Jia, H. Z.; Sun, Y. X.; Cheng, H.; Zhuo, R. X.; Zhang, X. Z. An indicator-guided photocontrolled drug delivery system based on mesoporous silica/gold nanocomposites. Nano Res. 2015, 8, 1893–1905.

    Article  Google Scholar 

  22. Ariga, K.; Lvov, Y. M.; Kawakami, K.; Ji, Q. M.; Hill, J. P. Layer-by-layer self-assembled shells for drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 762–771.

    Article  Google Scholar 

  23. Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

    Article  Google Scholar 

  24. Choi, S. J.; Choy, J. H. Layered double hydroxide nanoparticles as target-specific delivery carriers: Uptake mechanism and toxicity. Nanomedicine 2011, 6, 803–814.

    Article  Google Scholar 

  25. Lvov, Y.; Wang, W. C.; Zhang, L. Q.; Fakhrullin, R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 2016, 28, 1227–1250.

    Article  Google Scholar 

  26. Vergaro, V.; Abdullayev, E.; Lvov, Y. M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 2010, 11, 820–826.

    Article  Google Scholar 

  27. Lvov, Y.; Aerov, A.; Fakhrullin, R. Clay nanotube encapsulation for functional biocomposites. Adv. Colloid Interface Sci. 2014, 207, 189–198.

    Article  Google Scholar 

  28. Tully, J.; Yendluri, R.; Lvov, Y. Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules 2016, 17, 615–621.

    Article  Google Scholar 

  29. Niu, M. Y.; Yang, H. M.; Zhang, X. C.; Wang, Y. T.; Tang, A. D. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl. Mater. Interfaces 2016, 8, 17312–17320.

    Article  Google Scholar 

  30. Li, X. Y.; Yang, Q.; Ouyang, J.; Yang, H. M.; Chang, S. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl. Clay Sci. 2016, 126, 306–312.

    Article  Google Scholar 

  31. Niu, M. Y.; Li, X. Y.; Ouyang, J.; Yang, H. M. Lithium orthosilicate with halloysite as silicon source for high temperature CO2 capture. RSC Adv. 2016, 6, 44106–44112.

    Article  Google Scholar 

  32. Jin, J.; Fu, L. J.; Yang, H. M.; Ouyang, J. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities. Sci. Rep. 2015, 5, 12429.

    Article  Google Scholar 

  33. Corrales, T.; Larraza, I.; Catalina, F.; Portolés, T.; Ramírez-Santillán, C.; Matesanz, M.; Abrusci, C. In vitro biocompatibility and antimicrobial activity of poly(ɛ-caprolactone)/ montmorillonite nanocomposites. Biomacromolecules 2012, 13, 4247–4256.

    Article  Google Scholar 

  34. Wang, Z. Y.; Zhu, W. P.; Qiu, Y.; Yi, X.; von dem Bussche, A.; Kane, A.; Gao, H. J.; Koski, K.; Hurt, R. Biological and environmental interactions of emerging twodimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 1750–1780.

    Article  Google Scholar 

  35. Durak, G. M.; Taylor, A. R.; Walker, C. E.; Probert, I.; de Vargas, C.; Audic, S.; Schroeder, D.; Brownlee, C.; Wheeler, G. L. A role for diatom-like silicon transporters in calcifying coccolithophores. Nat. Commun. 2016, 7, 10543.

    Article  Google Scholar 

  36. Delalat, B.; Sheppard, V. C.; Ghaemi, S. R.; Rao, S. S.; Prestidge, C. A.; McPhee, G.; Rogers, M.-L.; Donoghue, J. F.; Pillay, V.; Johns, T. G. et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun. 2015, 6, 8791.

    Article  Google Scholar 

  37. Maher, S.; Alsawat, M.; Kumeria, T.; Fathalla, D.; Fetih, G.; Santos, A.; Habib, F.; Losic, D. Luminescent silicon diatom replicas: Self-reporting and degradable drug carriers with biologically derived shape for sustained delivery of therapeutics. Adv. Funct. Mater. 2015, 25, 5107–5116.

    Article  Google Scholar 

  38. Liu, S. Y.; Yang, H. M. Composite of coal-series kaolinite and capric-lauric acid as form-stable phase-change material. Energy Technol. 2015, 3, 77–83.

    Article  Google Scholar 

  39. Tan, D. Y.; Yuan, P.; Annabi-Bergaya, F.; Liu, D.; He, H. P. Methoxy-modified kaolinite as a novel carrier for highcapacity loading and controlled-release of the herbicide amitrole. Sci. Rep. 2015, 5, 8870.

    Article  Google Scholar 

  40. Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Adv. 2015, 5, 29467–29481.

    Article  Google Scholar 

  41. Ding, W. J.; Ouyang, J.; Yang, H. M. Synthesis and characterization of nesquehonite (MgCO3·3H2O) powders from natural talc. Powder Technol. 2016, 292, 169–175.

    Article  Google Scholar 

  42. He, X.; Yang, H. M. Fluorescence and room temperature activity of Y2O3:(Eu3+,Au3+)/palygorskite nanocomposite. Dalton Trans. 2015, 44, 1673–1679.

    Article  Google Scholar 

  43. Hu, P. W.; Yang, H. M. Insight into the physicochemical aspects of kaolins with different morphologies. Appl. Clay Sci. 2013, 74, 58–65.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51225403 and 41572036), the Hunan Provincial Science and Technology Project (Nos. 2016RS2004 and 2015TP1006), the Postdoctoral Science Foundation of Central South University (No. 155219) and the China Postdoctoral Science Foundation (No. 2015M582346).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaming Yang, Shi Chang or Yuehua Hu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Long, M., Huang, P. et al. Intercalated 2D nanoclay for emerging drug delivery in cancer therapy. Nano Res. 10, 2633–2643 (2017). https://doi.org/10.1007/s12274-017-1466-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1466-x

Keywords

  • cancer therapy
  • nanoclay
  • intercalation
  • drug delivery
  • biocompatibility