Advertisement

Nano Research

, Volume 10, Issue 6, pp 2168–2180 | Cite as

Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators

  • Linyang LiEmail author
  • Ortwin LeenaertsEmail author
  • Xiangru KongEmail author
  • Xin Chen
  • Mingwen Zhao
  • François M. PeetersEmail author
Research Article

Abstract

Quantum spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are crucial for future applications of the QSH effect. Among these, group III–V monolayers and their halides, which have a chair structure (regular hexagonal framework), have been widely studied. Using first-principles calculations, we formulate a new structure model for the functionalized group III–V monolayers, which consist of rectangular GaBi-X2 (X = I, Br, Cl) monolayers with a distorted hexagonal framework (DHF). These structures have a far lower energy than the GaBi-X2 monolayers with a chair structure. Remarkably, the DHF GaBi-X2 monolayers are all QSH insulators, which exhibit sizeable nontrivial bandgaps ranging from 0.17 to 0.39 eV. The bandgaps can be widely tuned by applying different spin-orbit coupling strengths, resulting in a distorted Dirac cone.

Keywords

quantum spin Hall (QSH) insulators first-principles calculations GaBi-X2 (X = I, Br, Cl) monolayers distorted hexagonal framework distorted Dirac cone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government–department EWI.

Supplementary material

12274_2017_1464_MOESM1_ESM.pdf (2 mb)
Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Guzmán-Verri, G. G.; Lew Yan Voon, L. C. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131.CrossRefGoogle Scholar
  3. [3]
    Jamgotchian, H.; Colignon, Y.; Hamzaoui, N.; Ealet, B.; Hoarau, J. Y.; Aufray, B.; Bibérian, J. P. Growth of silicene layers on Ag(111): Unexpected effect of the substrate temperature. J. Phys.: Condens. Matter 2012, 24, 172001.Google Scholar
  4. [4]
    Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.CrossRefGoogle Scholar
  5. [5]
    Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507–3511.CrossRefGoogle Scholar
  6. [6]
    Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.CrossRefGoogle Scholar
  7. [7]
    Lin, C. L.; Arafune, R.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; Takagi, N.; Kawai, M. Structure of silicene grown on Ag(111). Appl. Phys. Express 2012, 5, 045802.CrossRefGoogle Scholar
  8. [8]
    Chiappe, D.; Grazianetti, C.; Tallarida, G.; Fanciulli, M.; Molle, A. Local electronic properties of corrugated silicene phases. Adv. Mater. 2012, 24, 5088–5093.CrossRefGoogle Scholar
  9. [9]
    Arafune, R.; Lin, C. L.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; Takagi, N.; Kawai, M. Structural transition of silicene on Ag(111). Surf. Sci. 2013, 608, 297–300.CrossRefGoogle Scholar
  10. [10]
    Feng, B. J.; Li, H.; Liu, C. C.; Shao, T. N.; Cheng, P.; Yao, Y. G.; Meng, S.; Chen, L.; Wu, K. H. Observation of Dirac cone warping and chirality effects in silicene. ACS Nano 2013, 7, 9049–9054.CrossRefGoogle Scholar
  11. [11]
    Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.CrossRefGoogle Scholar
  12. [12]
    Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.CrossRefGoogle Scholar
  13. [13]
    Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.CrossRefGoogle Scholar
  14. [14]
    Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.CrossRefGoogle Scholar
  15. [15]
    Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414–4421.CrossRefGoogle Scholar
  16. [16]
    Jiang, S. S.; Butler, S.; Bianco, E.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat. Commun. 2014, 5, 3389.Google Scholar
  17. [17]
    Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510–2516.CrossRefGoogle Scholar
  18. [18]
    Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.CrossRefGoogle Scholar
  19. [19]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  20. [20]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  21. [21]
    Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.CrossRefGoogle Scholar
  22. [22]
    Zhou, H. C.; Zhao, M. W.; Zhang, X. M.; Dong, W. Z.; Wang, X. P.; Bu, H. X.; Wang, A. Z. First-principles prediction of a new Dirac-fermion material: Silicon germanide monolayer. J. Phys.: Condens. Matter 2013, 25, 395501.Google Scholar
  23. [23]
    Li, J.; He, C. Y.; Meng, L. J.; Xiao, H. P.; Tang, C.; Wei, X. L.; Kim, J.; Kioussis, N.; Malcolm Stocks, G.; Zhong, J. X. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe. Sci. Rep. 2015, 5, 14115.CrossRefGoogle Scholar
  24. [24]
    Chuang, F. C.; Yao, L. Z.; Huang, Z. Q.; Liu, Y. T.; Hsu, C. H.; Das, T.; Lin, H.; Bansil, A. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi. Nano Lett. 2014, 14, 2505–2508.CrossRefGoogle Scholar
  25. [25]
    Wang, Z. F.; Su, N. H.; Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 2013, 13, 2842–2845.CrossRefGoogle Scholar
  26. [26]
    Wang, Z. F.; Liu, Z.; Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 2013, 4, 1471.CrossRefGoogle Scholar
  27. [27]
    Wang, Z. F.; Liu, Z.; Liu, F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys. Rev. Lett. 2013, 110, 196801.CrossRefGoogle Scholar
  28. [28]
    Liu, Z.; Wang, Z. F.; Mei, J. W.; Wu, Y. S.; Liu, F. Flat Chern band in a two-dimensional organometallic framework. Phys. Rev. Lett. 2013, 110, 106804.CrossRefGoogle Scholar
  29. [29]
    Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.CrossRefGoogle Scholar
  30. [30]
    Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.CrossRefGoogle Scholar
  31. [31]
    Bernevig, B. A.; Zhang, S. C. Quantum spin Hall effect. Phys. Rev. Lett. 2006, 96, 106802.CrossRefGoogle Scholar
  32. [32]
    Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.CrossRefGoogle Scholar
  33. [33]
    König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. L.; Zhang, S. C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.CrossRefGoogle Scholar
  34. [34]
    Knez, I.; Du, R. R.; Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 2011, 107, 136603.CrossRefGoogle Scholar
  35. [35]
    Ren, Y. F.; Qiao, Z. H.; Niu, Q. Topological phases in two-dimensional materials: A review. Rep. Prog. Phys. 2016, 79, 066501.CrossRefGoogle Scholar
  36. [36]
    Takayama, A.; Sato, T.; Souma, S.; Oguchi, T.; Takahashi, T. One-dimensional edge states with giant spin splitting in a bismuth thin film. Phys. Rev. Lett. 2015, 114, 066402.CrossRefGoogle Scholar
  37. [37]
    Drozdov, I. K.; Alexandradinata, A.; Jeon, S.; Nadj-Perge, S.; Ji, H. W.; Cava, R. J.; Bernevig, B. A.; Yazdani, A. Onedimensional topological edge states of bismuth bilayers. Nat. Phys. 2014, 10, 664–669.CrossRefGoogle Scholar
  38. [38]
    Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.CrossRefGoogle Scholar
  39. [39]
    Kou, L. Z.; Yan, B. H.; Hu, F. M.; Wu, S. C.; Wehling, T. O.; Felser, C.; Chen, C. F.; Frauenheim, T. Graphene-based topological insulator with an intrinsic bulk band gap above room temperature. Nano Lett. 2013, 13, 6251–6255.CrossRefGoogle Scholar
  40. [40]
    Kou, L. Z.; Wu, S. C.; Felser, C.; Frauenheim, T.; Chen, C. F.; Yan, B. H. Robust 2D topological insulators in van der Waals heterostructures. ACS Nano 2014, 8, 10448–10454.CrossRefGoogle Scholar
  41. [41]
    Liu, C. C.; Feng, W. X.; Yao, Y. G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.CrossRefGoogle Scholar
  42. [42]
    Liu, C. C.; Jiang, H.; Yao, Y. G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430.CrossRefGoogle Scholar
  43. [43]
    Tang, P. Z.; Chen, P. C.; Cao, W. D.; Huang, H. Q.; Cahangirov, S.; Xian, L. D.; Xu, Y.; Zhang, S. C.; Duan, W. H.; Rubio, A. Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator. Phys. Rev. B 2014, 90, 121408(R).CrossRefGoogle Scholar
  44. [44]
    Chen, X.; Li, L. Y.; Zhao, M. W. Hydrogenation-induced large-gap quantum-spin-Hall insulator states in a germanium–tin dumbbell structure. RSC Adv. 2015, 5, 72462–72468.CrossRefGoogle Scholar
  45. [45]
    Chen, X.; Li, L. Y.; Zhao, M. W. Dumbbell stanane: A large-gap quantum spin Hall insulator. Phys. Chem. Chem. Phys. 2015, 17, 16624–16629.CrossRefGoogle Scholar
  46. [46]
    Nie, S. M.; Song, Z. D.; Weng, H. M.; Fang, Z. Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites. Phys. Rev. B 2015, 91, 235434.CrossRefGoogle Scholar
  47. [47]
    Li, W. F.; Guo, M.; Zhang, G.; Zhang, Y. W. Gapless MoS2 allotrope possessing both massless Dirac and heavy fermions. Phys. Rev. B 2014, 89, 205402.CrossRefGoogle Scholar
  48. [48]
    Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Heine, T. Twodimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators. Phys. Rev. B 2016, 93, 035442.CrossRefGoogle Scholar
  49. [49]
    Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Smith, S. C.; Heine, T. Quantum spin Hall effect and topological phase transition in two-dimensional square transition-metal dichalcogenides. Phys. Rev. B 2015, 92, 085427.CrossRefGoogle Scholar
  50. [50]
    Sun, Y.; Felser, C.; Yan, B. H. Graphene-like Dirac states and quantum spin Hall insulators in square-octagonal MX2 (M = Mo, W; X = S, Se, Te) isomers. Phys. Rev. B 2015, 92, 165421.CrossRefGoogle Scholar
  51. [51]
    Liu, P. F.; Zhou, L. J.; Frauenheim, T.; Wu, L. M. New quantum spin Hall insulator in two-dimensional MoS2 with periodically distributed pores. Nanoscale 2016, 8, 4915–4921.CrossRefGoogle Scholar
  52. [52]
    Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.CrossRefGoogle Scholar
  53. [53]
    Li, X. R.; Dai, Y.; Ma, Y. D.; Wei, W.; Yu, L.; Huang, B. B. Prediction of large-gap quantum spin Hall insulator and Rashba–Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films. Nano Res. 2015, 8, 2954–2962.CrossRefGoogle Scholar
  54. [54]
    Zhou, L. J.; Kou, L. Z.; Sun, Y.; Felser, C.; Hu, F. M.; Shan, G. C.; Smith, S. C.; Yan, B. H.; Frauenheim, T. New family of quantum spin Hall insulators in two-dimensional transition-metal halide with large nontrivial band gaps. Nano Lett. 2015, 15, 7867–7872.CrossRefGoogle Scholar
  55. [55]
    Liu, Z.; Liu, C. X.; Wu, Y. S.; Duan, W. H.; Liu, F.; Wu, J. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett. 2011, 107, 136805.CrossRefGoogle Scholar
  56. [56]
    Weng, H. M.; Dai, X.; Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 2014, 4, 011002.Google Scholar
  57. [57]
    Kou, L. Z.; Ma, Y. D.; Yan, B. H.; Tan, X.; Chen, C. F.; Smith, S. C. Encapsulated silicene: A robust large-gap topological insulator. ACS Appl. Mater. Interfaces 2015, 7, 19226–19233.CrossRefGoogle Scholar
  58. [58]
    Liu, Q. H.; Zhang, X. W.; Abdalla, L. B.; Fazzio, A.; Zunger, A. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 2015, 15, 1222–1228.CrossRefGoogle Scholar
  59. [59]
    Song, Z. G.; Liu, C. C.; Yang, J. B.; Han, J. Z.; Ye, M.; Fu, B. T.; Yang, Y. C.; Niu, Q.; Lu, J.; Yao, Y. G. Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 2014, 6, e147.CrossRefGoogle Scholar
  60. [60]
    Liu, C. C.; Guan, S.; Song, Z. G.; Yang, S. A.; Yang, J. B.; Yao, Y. G. Low-energy effective Hamiltonian for giant-gap quantum spin Hall insulators in honeycomb X-hydride/halide (X = N–Bi) monolayers. Phys. Rev. B 2014, 90, 085431.CrossRefGoogle Scholar
  61. [61]
    Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S. C. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.CrossRefGoogle Scholar
  62. [62]
    Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. L.; Duan, W. H. Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 2014, 89, 115429.CrossRefGoogle Scholar
  63. [63]
    Zhou, J. J.; Feng, W. X.; Liu, C. C.; Guan, S.; Yao, Y. G. Large-GAP QUANTUM spin Hall insulator in single layer bismuth monobromide Bi4Br4. Nano Lett. 2014, 14, 4767–4771.CrossRefGoogle Scholar
  64. [64]
    Luo, W.; Xiang, H. J. Room temperature quantum spin Hall insulators with a buckled square lattice. Nano Lett. 2015, 15, 3230–3235.CrossRefGoogle Scholar
  65. [65]
    Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methylfunctionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2015, 15, 1083–1089.CrossRefGoogle Scholar
  66. [66]
    Wang, Y. P.; Ji, W. X.; Zhang, C. W.; Li, P.; Li, F.; Ren, M. J.; Chen, X. L.; Yuan, M.; Wang, P. J. Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene. Sci. Rep. 2016, 6, 20342.CrossRefGoogle Scholar
  67. [67]
    Zhao, H.; Zhang, C. W.; Ji, W. X.; Zhang, R. W.; Li, S. S.; Yan, S. S.; Zhang, B. M.; Li, P.; Wang, P. J. Unexpected giant-gap quantum spin Hall insulator in chemically decorated plumbene monolayer. Sci. Rep. 2016, 6, 20152.CrossRefGoogle Scholar
  68. [68]
    Zhang, R. W.; Zhang, C. W.; Ji, W. X.; Li, S. S.; Yan, S. S.; Hu, S. J.; Li, P.; Wang, P. J.; Li, F. Room temperature quantum spin Hall insulator in ethynyl-derivative functionalized stanene films. Sci. Rep. 2016, 6, 18879.CrossRefGoogle Scholar
  69. [69]
    Ji, W. X.; Zhang, C. W.; Ding, M.; Li, P.; Li, F.; Ren, M. J.; Wang, P. J.; Hu, S. J.; Yan, S. S. Stanene cyanide: A novel candidate of quantum spin Hall insulator at high temperature. Sci. Rep. 2015, 5, 18604.CrossRefGoogle Scholar
  70. [70]
    Ma, Y. D.; Dai, Y.; Wei, W.; Huang, B. B.; Whangbo, M. H. Strain-induced quantum spin Hall effect in methylsubstituted germanane GeCH3. Sci. Rep. 2014, 4, 7297.CrossRefGoogle Scholar
  71. [71]
    Crisostomo, C. P.; Yao, L. Z.; Huang, Z. Q.; Hsu, C. H.; Chuang, F. C.; Lin, H.; Albao, M. A.; Bansil, A. Robust large gap two-dimensional topological insulators in hydrogenated III−V buckled honeycombs. Nano Lett. 2015, 15, 6568–6574.CrossRefGoogle Scholar
  72. [72]
    Freitas, R. R. Q.; Rivelino, R.; de Brito Mota, F.; de Castilho, C. M. C.; Kakanakova-Georgieva, A.; Gueorguiev, G. K. Topological insulating phases in two-dimensional bismuthcontaining single layers preserved by hydrogenation. J. Phys. Chem. C 2015, 119, 23599–23606.CrossRefGoogle Scholar
  73. [73]
    Ma, Y. D.; Li, X.; Kou, L. Z.; Yan, B. H.; Niu, C. W.; Dai, Y.; Heine, T. Two-dimensional inversion-asymmetric topological insulators in functionalized III-Bi bilayers. Phys. Rev. B 2015, 91, 235306.CrossRefGoogle Scholar
  74. [74]
    Li, L. Y.; Zhang, X. M.; Chen, X.; Zhao, M. W. Giant topological nontrivial band gaps in chloridized gallium bismuthide. Nano Lett. 2015, 15, 1296–1301.CrossRefGoogle Scholar
  75. [75]
    Freitas, R. R. Q.; de Brito Mota, F.; Rivelino, R.; de Castilho, C. M. C.; Kakanakova-Georgieva, A.; Gueorguiev, G. K. Tuning band inversion symmetry of buckled III-Bi sheets by halogenation. Nanotechnology 2016, 27, 055704.CrossRefGoogle Scholar
  76. [76]
    Li, S. S.; Ji, W. X.; Zhang, C. W.; Hu, S. J.; Li, P.; Wang, P. J.; Zhang, B. M.; Cao, C. L. Robust room-temperature quantum spin Hall effect in methyl-functionalized InBi honeycomb film. Sci. Rep. 2016, 6, 23242.CrossRefGoogle Scholar
  77. [77]
    Zhang, R. W.; Zhang, C. W.; Ji, W. X.; Li, S. S.; Yan, S. S.; Li, P.; Wang, P. J. Functionalized thallium antimony films as excellent candidates for large-gap quantum spin Hall insulator. Sci. Rep. 2016, 6, 21351.CrossRefGoogle Scholar
  78. [78]
    Zhao, M. W.; Chen, X.; Li, L. Y.; Zhang, X. M. Driving a GaAs film to a large-gap topological insulator by tensile strain. Sci. Rep. 2015, 5, 8441.CrossRefGoogle Scholar
  79. [79]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  80. [80]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.CrossRefGoogle Scholar
  81. [81]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  82. [82]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  83. [83]
    Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.CrossRefGoogle Scholar
  84. [84]
    Soluyanov, A. A.; Vanderbilt, D. Computing topological invariants without inversion symmetry. Phys. Rev. B 2011, 83, 235401.CrossRefGoogle Scholar
  85. [85]
    Fu, L.; Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 2006, 74, 195312.CrossRefGoogle Scholar
  86. [86]
    Marzari, N.; Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 1997, 56, 12847–12865.CrossRefGoogle Scholar
  87. [87]
    Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. Wannier90: A tool for obtaining maximallylocalised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.CrossRefGoogle Scholar
  88. [88]
    Henini, M.; Ibáñez, J.; Schmidbauer, M.; Shafi, M.; Novikov, S. V.; Turyanska, L.; Molina, S. I.; Sales, D. L.; Chisholm, M. F.; Misiewicz, J. Molecular beam epitaxy of GaBiAs on (311) B GaAs substrates. Appl. Phys. Lett. 2007, 91, 251909.CrossRefGoogle Scholar
  89. [89]
    Francoeur, S.; Seong, M. J.; Mascarenhas, A.; Tixier, S.; Adamcyk, M.; Tiedje, T. Band gap of GaAs1–xBix, 0 < x <3.6%. Appl. Phys. Lett. 2003, 82, 3874–3876.CrossRefGoogle Scholar
  90. [90]
    Denisov, N. V.; Alekseev, A. A.; Utas, O. A.; Azatyan, S. G.; Zotov, A. V.; Saranin, A. A. Bismuth–indium two-dimensional compounds on Si(111) surface. Surf. Sci. 2016, 651, 105–111.CrossRefGoogle Scholar
  91. [91]
    Gruznev, D. V.; Bondarenko, L. V.; Matetskiy, A. V.; Mihalyuk, A. N.; Tupchaya, A. Y.; Utas, O. A.; Eremeev, S. V.; Hsing, C. R.; Chou, J. P.; Wei, C. M. et al. Synthesis of twodimensional TlxBi1−x compounds and Archimedean encoding of their atomic structure. Sci. Rep. 2016, 6, 19446.CrossRefGoogle Scholar
  92. [92]
    Ma, F. X.; Zhou, M.; Jiao, Y. L.; Gao, G. P.; Gu, Y. T.; Billic, A.; Chen, Z. F.; Du, A. J. Single layer bismuth iodide: Computational exploration of structural, electrical, mechanical and optical properties. Sci. Rep. 2015, 5, 17558.CrossRefGoogle Scholar
  93. [93]
    Trotter, J.; Zobel, T. The crystal structure of SbI3 and BiI3. Z. Kristallogr. 1966, 123, 67–72.Google Scholar
  94. [94]
    Morino, Y.; Ukaji, T.; Ito, T. Molecular structure determination by gas electron diffraction at high temperatures. II. Arsenic triiodide and gallium triiodide. Bull. Chem. Soc. Jpn. 1966, 39, 71–78.CrossRefGoogle Scholar
  95. [95]
    Drake, M. C.; Rosenblatt, G. M. Raman spectroscopy of gaseous GaCl3 and GaI3. J. Chem. Phys. 1976, 65, 4067–4071.CrossRefGoogle Scholar
  96. [96]
    Saboungi, M. L.; Howe, M. A.; Price, D. L. Structure and dynamics of molten aluminium and gallium trihalides I. Neutron diffraction. Mol. Phys. 1993, 79, 847–857.Google Scholar
  97. [97]
    Wang, Z. H.; Zhou, X. F.; Zhang, X. M.; Zhu, Q.; Dong, H. F.; Zhao, M. W.; Oganov, A. R. Phagraphene: A low-energy graphene allotrope composed of 5−6−7 carbon rings with distorted Dirac cones. Nano Lett. 2015, 15, 6182–6186.CrossRefGoogle Scholar
  98. [98]
    Zhou, L. J.; Shi, W. J.; Sun, Y.; Shao, B.; Felser, C.; Yan, B. H.; Frauenheim, T. Two-dimensional rectangular tantalum carbide halides TaCX (X = Cl, Br, I): Novel large-gap quantum spin Hall insulators. 2D Mater. 2016, 3, 035018.CrossRefGoogle Scholar
  99. [99]
    Giglberger, S.; Golub, L. E.; Bel’kov, V. V.; Danilov, S. N.; Schuh, D.; Gerl, C.; Rohlfing, F.; Stahl, J.; Wegscheider, W.; Weiss, D. et al. Rashba and Dresselhaus spin splittings in semiconductor quantum wells measured by spin photocurrents. Phys. Rev. B 2007, 75, 035327.CrossRefGoogle Scholar
  100. [100]
    Bychkov, Y. A.; Rashba, É. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78–81.Google Scholar
  101. [101]
    Lommer, G.; Malcher, F.; Rössler, U. Reduced g factor of subband Landau levels in AlGaAs/GaAs heterostructures. Phys. Rev. B 1985, 32, 6965–6967.CrossRefGoogle Scholar
  102. [102]
    Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.CrossRefGoogle Scholar
  103. [103]
    Ming, W. M.; Wang, Z. F.; Zhou, M.; Yoon, M.; Liu, F. Formation of ideal Rashba states on layered semiconductor surfaces steered by strain engineering. Nano Lett. 2016, 16, 404–409.CrossRefGoogle Scholar
  104. [104]
    Kou, L. Z.; Tan, X.; Ma, Y. D.; Tahini, H.; Zhou, L. J.; Sun, Z. Q.; Du, A. J.; Chen, C. F.; Smith, S. C. Tetragonal bismuth bilayer: A stable and robust quantum spin Hall insulator. 2D Mater. 2015, 2, 045010.CrossRefGoogle Scholar
  105. [105]
    Huang, B.; Jin, K. H.; Zhuang, H. L.; Zhang, L. Z.; Liu, F. Interface orbital engineering of large-gap topological states: Decorating gold on a Si(111) surface. Phys. Rev. B 2016, 93, 115117.CrossRefGoogle Scholar
  106. [106]
    Wang, M. Y.; Liu, L. P.; Liu, C. C.; Yao, Y. G. van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls. Phys. Rev. B 2016, 93, 155412.CrossRefGoogle Scholar
  107. [107]
    Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.CrossRefGoogle Scholar
  108. [108]
    Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AntwerpAntwerpBelgium
  2. 2.International Center for Quantum MaterialsPeking UniversityBeijingChina
  3. 3.School of Physics and State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina

Personalised recommendations