Skip to main content

A carbon-based 3D current collector with surface protection for Li metal anode

Abstract

Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells. However, growth of Li dendrites, unstable solid electrolyte interphases, low Coulombic efficiencies, and safety hazards have significantly hindered the practical application of metallic Li anodes. Herein, we propose a three-dimensional (3D) carbon nanotube sponge (CNTS) as a Li deposition host. The high specific surface area of the CNTS enables homogenous charge distribution for Li nucleation and minimizes the effective current density to overcome dendrite growth. An additional conformal Al2O3 layer on the CNTS coated by atomic layer deposition (ALD) robustly protects the Li metal electrode/electrolyte interface due to the good chemical stability and high mechanical strength of the layer. The Li@ALD-CNTS electrode exhibits stable voltage profiles with a small overpotential ranging from 16 to 30 mV over 100 h of cycling at 1.0 mA·cm–2. Moreover, the electrodes display a dendrite-free morphology after cycling and a Coulombic efficiency of 92.4% over 80 cycles at 1.0 mA·cm–2 in an organic carbonate electrolyte, thus demonstrating electrochemical stability superior to that of planar current collectors. Our results provide an important strategy for the rational design of current collectors to obtain stable Li metal anodes.

This is a preview of subscription content, access via your institution.

References

  1. Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  2. Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Threedimensional battery architectures. Chem. Rev. 2004, 104, 4463–4492.

    Article  Google Scholar 

  3. Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  4. Kim, H.; Jeong, G.; Kim, Y.-U.; Kim, J.-H.; Park, C.-M.; Sohn, H.-J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

    Article  Google Scholar 

  5. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  Google Scholar 

  6. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  7. Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium–air battery electrode. Nano Lett. 2011, 11, 5071–5078.

    Article  Google Scholar 

  8. Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res. 2015, 8, 576–583.

    Article  Google Scholar 

  9. Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. G.; Wang, Y.; Liu, J. Making Li-air batteries rechargeable: Material challenges. Adv. Funct. Mater. 2013, 23, 987–1004.

    Article  Google Scholar 

  10. Lee, J. S.; Tai Kim, S.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 2011, 1, 34–50.

    Article  Google Scholar 

  11. Luo, X. Y.; Lu, J.; Sohm, E.; Ma, L.; Wu, T. P.; Wen, J. G.; Qiu, D. T.; Xu, Y. K.; Ren, Y.; Miller, D. J. et al. Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery. Nano Res. 2016, 9, 1913–1920.

    Article  Google Scholar 

  12. Trahey, L.; Karan, N. K.; Chan, M. K. Y.; Lu, J.; Ren, Y.; Greeley, J.; Balasubramanian, M.; Burrell, A. K.; Curtiss, L. A.; Thackeray, M. M. Synthesis, characterization, and structural modeling of high-capacity, dual functioning MnO2 electrode/electrocatalysts for Li-O2 cells. Adv. Energy Mater. 2013, 3, 75–84.

    Article  Google Scholar 

  13. Zhong, X.; Papandrea, B.; Xu, Y. X.; Lin, Z. Y.; Zhang, H.; Liu, Y.; Huang, Y.; Duan, X. F. Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. Nano Res. 2017, 2, 472–482.

    Article  Google Scholar 

  14. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. 2011, 123, 6026–6030.

    Article  Google Scholar 

  15. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  16. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    Article  Google Scholar 

  17. Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 2014, 8, 9295–9303.

    Article  Google Scholar 

  18. Liu, M. K.; Yang, Z. B.; Sun, H.; Lai, C.; Zhao, X. S.; Peng, H. S.; Liu, T. X. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for highperformance lithium–sulfur batteries. Nano Res. 2016, 9, 3735–3746.

    Article  Google Scholar 

  19. Huang, J.-Q.; Zhang, Q.; Peng, H.-J.; Liu, X.-Y.; Qian, W.-Z.; Wei, F. Ionic shield for polysulfides towards highlystable lithium–sulfur batteries. Energy Environ. Sci. 2014, 7, 347–353.

    Article  Google Scholar 

  20. Ji, X. L.; Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem. 2010, 20, 9821–9826.

    Article  Google Scholar 

  21. Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.

    Article  Google Scholar 

  22. Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

    Article  Google Scholar 

  23. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405–416.

    Article  Google Scholar 

  24. Bhattacharyya, R.; Key, B.; Chen, H. L.; Best, A. S.; Hollenkamp, A. F.; Grey, C. P. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 2010, 9, 504–510.

    Article  Google Scholar 

  25. Zhang, X. L.; Wang, W. K.; Wang, A. B.; Huang, Y. Q.; Yuan, K. G.; Yu, Z. B.; Qiu, J. Y.; Yang, Y. S. Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery. J. Mater. Chem. A 2014, 2, 11660–11665.

    Article  Google Scholar 

  26. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

    Article  Google Scholar 

  27. Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D. H.; Cao, R. G. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 2014, 14, 6889–6896.

    Article  Google Scholar 

  28. Ota, H.; Sakata, Y.; Otake, Y.; Shima, K.; Ue, M.; Yamaki, J.-I. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. J. Electrochem. Soc. 2004, 151, A1778–A1788.

    Article  Google Scholar 

  29. Mogi, R.; Inaba, M.; Jeong, S.-K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 2002, 149, A1578–A1583.

    Article  Google Scholar 

  30. Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961–969.

    Article  Google Scholar 

  31. Zu, C. X.; Manthiram, A. Stabilized lithium-metal surface in a polysulfide-rich environment of lithium-sulfur batteries. J. Phys. Chem. Lett. 2014, 5, 2522–2527.

    Article  Google Scholar 

  32. Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y.-M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

    Article  Google Scholar 

  33. Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 2009, 156, A694–A702.

    Article  Google Scholar 

  34. Lin, Z.; Liu, Z. C.; Fu, W. J.; Dudney, N. J.; Liang, C. D. Phosphorous pentasulfide as a novel additive for highperformance lithium-sulfur batteries. Adv. Funct. Mater. 2013, 23, 1064–1069.

    Article  Google Scholar 

  35. Choudhury, S.; Mangal, R.; Agrawal, A.; Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 2015, 6, 10101.

    Article  Google Scholar 

  36. Fu, K. K.; Gong, Y. H.; Dai, J. Q.; Gong, A.; Han, X. G.; Yao, Y. G.; Wang, C. W.; Wang, Y. B.; Chen, Y.; Yan, C. Y. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099.

    Article  Google Scholar 

  37. Li, Y. T.; Zhou, W. D.; Chen, X.; Lü, X. J.; Cui, Z. M.; Xin, S.; Xue, L. G.; Jia, Q. X.; Goodenough, J. B. Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 13313–13317.

    Article  Google Scholar 

  38. Zheng, G. Y.; Lee, S.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

    Article  Google Scholar 

  39. Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

    Article  Google Scholar 

  40. Luo, W.; Zhou, L. H.; Fu, K.; Yang, Z.; Wan, J. Y.; Manno, M.; Yao, Y. G.; Zhu, H. L.; Yang, B.; Hu, L. B. A thermally conductive separator for stable Li metal anodes. Nano Lett. 2015, 15, 6149–6154.

    Article  Google Scholar 

  41. Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P.-C.; Chu, S.; Cui, Y. Polymer nanofiberguided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910–2916.

    Article  Google Scholar 

  42. Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium-ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

    Article  Google Scholar 

  43. Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428–3436.

    Article  Google Scholar 

  44. Ji, X. L.; Liu, D. Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 2012, 7, 10–20.

    Article  Google Scholar 

  45. Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

    Article  Google Scholar 

  46. Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H. B.; Zhou, F.; Yu, S.-H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

    Article  Google Scholar 

  47. Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

    Article  Google Scholar 

  48. Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volumechange and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

    Article  Google Scholar 

  49. Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862–2867.

    Article  Google Scholar 

  50. Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H.-W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

    Article  Google Scholar 

  51. Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium–sulfur batteries. Small 2014, 10, 4257–4263.

    Google Scholar 

  52. Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Baudry, P.; Lascaud, S. In situ study of dendritic growth inlithium/PEOsalt/ lithium cells. Electrochim. Acta 1998, 43, 1569–1574.

    Article  Google Scholar 

  53. Rosso, M.; Gobron, T.; Brissot, C.; Chazalviel, J.-N.; Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 2001, 97–98, 804–806.

    Article  Google Scholar 

  54. Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155–2162.

    Article  Google Scholar 

  55. Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano 2015, 9, 6373–6382.

    Article  Google Scholar 

  56. Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

    Article  Google Scholar 

  57. Gui, X. C.; Cao, A. Y.; Wei, J. Q.; Li, H. B.; Jia, Y.; Li, Z.; Fan, L. L.; Wang, K. L.; Zhu, H. W.; Wu, D. H. Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano 2010, 4, 2320–2326.

    Article  Google Scholar 

  58. Lin, Z. Q.; Zeng, Z. P.; Gui, X. C.; Tang, Z. K.; Zou, M. C.; Cao, A. Y. Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications. Adv. Energy Mater. 2016, 6, 1600554.

    Article  Google Scholar 

  59. Cohn, A. P.; Oakes, L.; Carter, R.; Chatterjee, S.; Westover, A. S.; Share, K.; Pint, C. L. Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes. Nanoscale 2014, 6, 4669–4675.

    Article  Google Scholar 

  60. Basile, A.; Bhatt, A. I.; O’Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 2016, 7, 11794.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award number DESC0001160. Y. Z. would like to acknowledge the China Scholarship Council (CSC No. 201506680044) for financial support. The authors would like to acknowledge Dr. Dianxue Cao from Harbin Engineering University (China) for his kind guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangbing Hu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, B., Hitz, E. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 10, 1356–1365 (2017). https://doi.org/10.1007/s12274-017-1461-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1461-2

Keywords

  • lithium metal anode
  • Coulombic efficiency
  • current collector
  • carbon nanotube
  • interfacial protection
  • stable cycling