Armand, M.; Tarascon, J.-M. Building better batteries. Nature
2008, 451, 652–657.
Article
Google Scholar
Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Threedimensional battery architectures. Chem. Rev.
2004, 104, 4463–4492.
Article
Google Scholar
Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature
2001, 414, 359–367.
Article
Google Scholar
Kim, H.; Jeong, G.; Kim, Y.-U.; Kim, J.-H.; Park, C.-M.; Sohn, H.-J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev.
2013, 42, 9011–9034.
Article
Google Scholar
Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci.
2014, 7, 513–537.
Article
Google Scholar
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater.
2012, 11, 19–29.
Article
Google Scholar
Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium–air battery electrode. Nano Lett.
2011, 11, 5071–5078.
Article
Google Scholar
Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res.
2015, 8, 576–583.
Article
Google Scholar
Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. G.; Wang, Y.; Liu, J. Making Li-air batteries rechargeable: Material challenges. Adv. Funct. Mater.
2013, 23, 987–1004.
Article
Google Scholar
Lee, J. S.; Tai Kim, S.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater.
2011, 1, 34–50.
Article
Google Scholar
Luo, X. Y.; Lu, J.; Sohm, E.; Ma, L.; Wu, T. P.; Wen, J. G.; Qiu, D. T.; Xu, Y. K.; Ren, Y.; Miller, D. J. et al. Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery. Nano Res.
2016, 9, 1913–1920.
Article
Google Scholar
Trahey, L.; Karan, N. K.; Chan, M. K. Y.; Lu, J.; Ren, Y.; Greeley, J.; Balasubramanian, M.; Burrell, A. K.; Curtiss, L. A.; Thackeray, M. M. Synthesis, characterization, and structural modeling of high-capacity, dual functioning MnO2 electrode/electrocatalysts for Li-O2 cells. Adv. Energy Mater.
2013, 3, 75–84.
Article
Google Scholar
Zhong, X.; Papandrea, B.; Xu, Y. X.; Lin, Z. Y.; Zhang, H.; Liu, Y.; Huang, Y.; Duan, X. F. Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. Nano Res.
2017, 2, 472–482.
Article
Google Scholar
Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem.
2011, 123, 6026–6030.
Article
Google Scholar
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater.
2009, 8, 500–506.
Article
Google Scholar
Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev.
2013, 42, 3018–3032.
Article
Google Scholar
Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano
2014, 8, 9295–9303.
Article
Google Scholar
Liu, M. K.; Yang, Z. B.; Sun, H.; Lai, C.; Zhao, X. S.; Peng, H. S.; Liu, T. X. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for highperformance lithium–sulfur batteries. Nano Res.
2016, 9, 3735–3746.
Article
Google Scholar
Huang, J.-Q.; Zhang, Q.; Peng, H.-J.; Liu, X.-Y.; Qian, W.-Z.; Wei, F. Ionic shield for polysulfides towards highlystable lithium–sulfur batteries. Energy Environ. Sci.
2014, 7, 347–353.
Article
Google Scholar
Ji, X. L.; Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem.
2010, 20, 9821–9826.
Article
Google Scholar
Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res.
2013, 6, 38–46.
Article
Google Scholar
Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater.
2016, 6, 1600811.
Article
Google Scholar
Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics
2002, 148, 405–416.
Article
Google Scholar
Bhattacharyya, R.; Key, B.; Chen, H. L.; Best, A. S.; Hollenkamp, A. F.; Grey, C. P. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater.
2010, 9, 504–510.
Article
Google Scholar
Zhang, X. L.; Wang, W. K.; Wang, A. B.; Huang, Y. Q.; Yuan, K. G.; Yu, Z. B.; Qiu, J. Y.; Yang, Y. S. Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery. J. Mater. Chem. A
2014, 2, 11660–11665.
Article
Google Scholar
Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc.
2013, 135, 4450–4456.
Article
Google Scholar
Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D. H.; Cao, R. G. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett.
2014, 14, 6889–6896.
Article
Google Scholar
Ota, H.; Sakata, Y.; Otake, Y.; Shima, K.; Ue, M.; Yamaki, J.-I. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. J. Electrochem. Soc. 2004, 151, A1778–A1788.
Article
Google Scholar
Mogi, R.; Inaba, M.; Jeong, S.-K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 2002, 149, A1578–A1583.
Article
Google Scholar
Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater.
2014, 13, 961–969.
Article
Google Scholar
Zu, C. X.; Manthiram, A. Stabilized lithium-metal surface in a polysulfide-rich environment of lithium-sulfur batteries. J. Phys. Chem. Lett.
2014, 5, 2522–2527.
Article
Google Scholar
Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y.-M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun.
2015, 6, 7436.
Article
Google Scholar
Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 2009, 156, A694–A702.
Article
Google Scholar
Lin, Z.; Liu, Z. C.; Fu, W. J.; Dudney, N. J.; Liang, C. D. Phosphorous pentasulfide as a novel additive for highperformance lithium-sulfur batteries. Adv. Funct. Mater.
2013, 23, 1064–1069.
Article
Google Scholar
Choudhury, S.; Mangal, R.; Agrawal, A.; Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun.
2015, 6, 10101.
Article
Google Scholar
Fu, K. K.; Gong, Y. H.; Dai, J. Q.; Gong, A.; Han, X. G.; Yao, Y. G.; Wang, C. W.; Wang, Y. B.; Chen, Y.; Yan, C. Y. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA
2016, 113, 7094–7099.
Article
Google Scholar
Li, Y. T.; Zhou, W. D.; Chen, X.; Lü, X. J.; Cui, Z. M.; Xin, S.; Xue, L. G.; Jia, Q. X.; Goodenough, J. B. Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc. Natl. Acad. Sci. USA
2016, 113, 13313–13317.
Article
Google Scholar
Zheng, G. Y.; Lee, S.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol.
2014, 9, 618–623.
Article
Google Scholar
Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett.
2014, 14, 6016–6022.
Article
Google Scholar
Luo, W.; Zhou, L. H.; Fu, K.; Yang, Z.; Wan, J. Y.; Manno, M.; Yao, Y. G.; Zhu, H. L.; Yang, B.; Hu, L. B. A thermally conductive separator for stable Li metal anodes. Nano Lett.
2015, 15, 6149–6154.
Article
Google Scholar
Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P.-C.; Chu, S.; Cui, Y. Polymer nanofiberguided uniform lithium deposition for battery electrodes. Nano Lett.
2015, 15, 2910–2916.
Article
Google Scholar
Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium-ions for efficient lithium metal batteries. Adv. Mater.
2016, 28, 2888–2895.
Article
Google Scholar
Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res.
2016, 9, 3428–3436.
Article
Google Scholar
Ji, X. L.; Liu, D. Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today
2012, 7, 10–20.
Article
Google Scholar
Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun.
2015, 6, 8058.
Article
Google Scholar
Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H. B.; Zhou, F.; Yu, S.-H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett.
2016, 16, 4431–4437.
Article
Google Scholar
Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater.
2016, 28, 6932–6939.
Article
Google Scholar
Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volumechange and dendrite-free lithium metal anode. Nat. Commun.
2016, 7, 10992.
Article
Google Scholar
Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA
2016, 113, 2862–2867.
Article
Google Scholar
Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H.-W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol.
2016, 11, 626–632.
Article
Google Scholar
Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium–sulfur batteries. Small
2014, 10, 4257–4263.
Google Scholar
Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Baudry, P.; Lascaud, S. In situ study of dendritic growth inlithium/PEOsalt/ lithium cells. Electrochim. Acta
1998, 43, 1569–1574.
Article
Google Scholar
Rosso, M.; Gobron, T.; Brissot, C.; Chazalviel, J.-N.; Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 2001, 97–98, 804–806.
Article
Google Scholar
Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater.
2016, 28, 2155–2162.
Article
Google Scholar
Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano
2015, 9, 6373–6382.
Article
Google Scholar
Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater.
2010, 22, 617–621.
Article
Google Scholar
Gui, X. C.; Cao, A. Y.; Wei, J. Q.; Li, H. B.; Jia, Y.; Li, Z.; Fan, L. L.; Wang, K. L.; Zhu, H. W.; Wu, D. H. Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano
2010, 4, 2320–2326.
Article
Google Scholar
Lin, Z. Q.; Zeng, Z. P.; Gui, X. C.; Tang, Z. K.; Zou, M. C.; Cao, A. Y. Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications. Adv. Energy Mater.
2016, 6, 1600554.
Article
Google Scholar
Cohn, A. P.; Oakes, L.; Carter, R.; Chatterjee, S.; Westover, A. S.; Share, K.; Pint, C. L. Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes. Nanoscale
2014, 6, 4669–4675.
Article
Google Scholar
Basile, A.; Bhatt, A. I.; O’Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun.
2016, 7, 11794.
Article
Google Scholar