Nano Research

, Volume 10, Issue 5, pp 1720–1731 | Cite as

Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets

  • Xin Ying Kong
  • Wen Liang Tan
  • Boon-Junn Ng
  • Siang-Piao ChaiEmail author
  • Abdul Rahman Mohamed
Research Article


The photocatalytic reduction of CO2 to energy-rich hydrocarbon fuels is a promising and sustainable method of addressing global warming and the imminent energy crisis concomitantly. However, a vast majority of the existing photocatalysts are only capable of harnessing ultraviolet (UV) or/and visible light (Vis), whereas the near-infrared (NIR) region still remains unexplored. In this study, carbon quantum dots (CQDs)-decorated ultrathin Bi2WO6 nanosheets (UBW) were demonstrated to be an efficient photocatalyst for CO2 photoreduction over the Vis–NIR broad spectrum. It is noteworthy that the synthesis procedure of the CQDs/UBW hybrid nanocomposites was highly facile, involving a one-pot hexadecyltrimethylammonium bromide (CTAB)-assisted hydrothermal process. Under visible light irradiation, the optimized 1CQDs/UBW (1 wt.% CQD content) exhibited a remarkable 9.5-fold and 3.1-fold enhancement of CH4 production over pristine Bi2WO6 nanoplatelets (PBW) and bare UBW, respectively. More importantly, the photocatalytic responsiveness of CQDs/UBW was successfully extended to the NIR region, which was achieved without involving any rare earth or noble metals. The realization of NIR-driven CO2 reduction could be attributed to the synergistic effects of (i) the ultrathin nanostructures and highly exposed {001} active facets of UBW, (ii) the excellent spectral coupling of UBW and CQDs, where UBW could be excited by the up-converted photoluminescence of CQDs, and (iii) the electron-withdrawing nature of the CQDs to trap the photogenerated electrons and retard the recombination of charge carriers.


photocatalysis CO2 reduction near-infrared (NIR) light carbon quantum dots bismuth tungstate ultrathin nanosheets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was funded by the Ministry of Higher Education (MOHE) Malaysia and Universiti Sains Malaysia (USM) under NanoMITe Long-term Research Grant Scheme (LRGS) (No. 203/PJKIMIA/6720009).

Supplementary material

12274_2017_1435_MOESM1_ESM.pdf (1.5 mb)
Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets


  1. [1]
    White, J. L.; Baruch, M. F.; Pander, J. E., III; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.CrossRefGoogle Scholar
  2. [2]
    Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.CrossRefGoogle Scholar
  3. [3]
    Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.CrossRefGoogle Scholar
  4. [4]
    Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.CrossRefGoogle Scholar
  5. [5]
    Wang, W. J.; Li, Y. C.; Kang, Z. W.; Wang, F.; Yu, J. C. A NIR-driven photocatalyst based on α-NaYF4:Yb, Tm@TiO2 core–shell structure supported on reduced graphene oxide. Appl. Catal. B 2016, 182, 184–192.CrossRefGoogle Scholar
  6. [6]
    Tou, M. J.; Mei, Y. Y.; Bai, S.; Luo, Z. G.; Zhang, Y.; Li, Z. Q. Depositing CdS nanoclusters on carbon-modified NaYF4:Yb,Tm upconversion nanocrystals for NIR-light enhanced photocatalysis. Nanoscale 2016, 8, 553–562.CrossRefGoogle Scholar
  7. [7]
    Tang, Y. N.; Di, W. H.; Zhai, X. S.; Yang, R. Y.; Qin, W. P. NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb,Tm@TiO2 core−shell nanoparticles. ACS Catal. 2013, 3, 405–412.CrossRefGoogle Scholar
  8. [8]
    Zheng, Z. K.; Tachikawa, T.; Majima, T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 2014, 136, 6870–6873.CrossRefGoogle Scholar
  9. [9]
    Chen, C. K.; Chen, H. M.; Chen, C.-J.; Liu, R.-S. Plasmonenhanced near-infrared-active materials in photoelectrochemical water splitting. Chem. Commun. 2013, 49, 7917–7919.CrossRefGoogle Scholar
  10. [10]
    Li, H. T.; Liu, R. H.; Liu, Y.; Huang, H.; Yu, H.; Ming, H.; Lian, S. Y.; Lee, S.-T.; Kang, Z. H. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J. Mater. Chem. 2012, 22, 17470–17475.CrossRefGoogle Scholar
  11. [11]
    Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.CrossRefGoogle Scholar
  12. [12]
    Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253.CrossRefGoogle Scholar
  13. [13]
    Yu, H. J.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang T. R. Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 2016, 28, 9454–9477.CrossRefGoogle Scholar
  14. [14]
    Liu, Q.; Chen, T. X.; Guo, Y. R.; Zhang, Z. G.; Fang, X. M. Environmental ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl. Catal. B 2016, 193, 248–258.CrossRefGoogle Scholar
  15. [15]
    Hou, J. G.; Cheng, H. J.; Yang, C.; Takeda, O.; Zhu, H. M. Hierarchical carbon quantum dots/hydrogenated-γ-TaON heterojunctions for broad spectrum photocatalytic performance. Nano Energy 2015, 18, 143–153.CrossRefGoogle Scholar
  16. [16]
    Ge, L.; Han, C. C.; Liu, J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B 2011, 108–109, 100–107.CrossRefGoogle Scholar
  17. [17]
    Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y.-J. Nanochemistry-derived Bi2WO6 nanostructures: Towards production of sustainable chemicals and fuels induced by visible light. Chem. Soc. Rev. 2014, 43, 5276–5287.CrossRefGoogle Scholar
  18. [18]
    Zhou, Y.; Tian, Z. P.; Zhao, Z. Y.; Liu, Q.; Kou, J. H.; Chen, X. Y.; Gao, J.; Yan, S. C.; Zou, Z. G. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces 2011, 3, 3594–3601.CrossRefGoogle Scholar
  19. [19]
    Zhang, D.; Li, J.; Wang, Q. G.; Wu, Q. S. High {001} facets dominated BiOBr lamellas: Facile hydrolysis preparation and selective visible-light photocatalytic activity. J. Mater. Chem. A 2013, 1, 8622–8629.CrossRefGoogle Scholar
  20. [20]
    Zhang, M.; Sun, R. Z.; Li, Y. J.; Shi, Q. M.; Xie, L. H.; Chen, J. S.; Xu, X. H.; Shi, H. X.; Zhao, W. R. High H2 evolution from quantum Cu(II) nanodot-doped two-dimensional ultrathin TiO2 nanosheets with dominant exposed {001} facets for reforming glycerol with multiple electron transport pathways. J. Phys. Chem. C 2016, 120, 10746–10756.CrossRefGoogle Scholar
  21. [21]
    Kong, X. Y.; Lee, W. P. C.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R. Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. ChemCatChem 2016, 8, 3074–3081.CrossRefGoogle Scholar
  22. [22]
    Kong, X. Y.; Choo, Y. Y.; Chai, S.-P.; Soh, A. K.; Mohamed, A. R. Oxygen vacancy induced Bi2WO6 for the realization of photocatalytic CO2 reduction over the full solar spectrum: From the UV to the NIR region. Chem. Commun. 2016, 52, 14242–14245.CrossRefGoogle Scholar
  23. [23]
    Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757–770.CrossRefGoogle Scholar
  24. [24]
    Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Goh, B. T.; Mohamed, A. R. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B 2015, 179, 160–170.CrossRefGoogle Scholar
  25. [25]
    Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528–1547.CrossRefGoogle Scholar
  26. [26]
    Zhang, G.; Hu, Z. Y.; Sun, M.; Liu, Y.; Liu, L. M.; Liu, H. J.; Huang, C. P.; Qu, J. H.; Li, J. H. Formation of Bi2WO6 bipyramids with vacancy pairs for enhanced solar-driven photoactivity. Adv. Funct. Mater. 2015, 25, 3726–3734.CrossRefGoogle Scholar
  27. [27]
    Di, J.; Xia, J. X.; Ge, Y. P.; Li, H. P.; Ji, H. Y.; Xu, H.; Zhang, Q.; Li, H. M.; Li, M. N. Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl. Catal. B 2015, 168–169, 51–61.CrossRefGoogle Scholar
  28. [28]
    Sun, Z. H.; Guo, J. J.; Zhu, S. M.; Mao, L.; Ma, J.; Zhang, D. A high-performance Bi2WO6–graphene photocatalyst for visible light-induced H2 and O2 generation. Nanoscale 2014, 6, 2186–2193.CrossRefGoogle Scholar
  29. [29]
    Di, J.; Xia, J. X.; Ji, M. X.; Wang, B.; Yin, S.; Zhang, Q.; Chen, Z. G.; Li, H. M. Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl. Mater. Interfaces 2015, 7, 20111–20123.CrossRefGoogle Scholar
  30. [30]
    Liu, C. M.; Liu, J. W.; Zhang, G. Y.; Zhang, J. B.; Wu, Q. S.; Xu, Y. Y.; Sun, Y.-Q. Facile room-temperature precipitation strategy for Ag2O/Bi2WO6 heterojunction with high simulated sunlight photocatalytic performance via bi-directed electron migration mechanism. RSC Adv. 2015, 5, 32333–32342.CrossRefGoogle Scholar
  31. [31]
    Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, C.; Yan, X. M.; Wu, M. H. Observation of pH-, solvent-, spin-, and excitationdependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 2010, 46, 3681–3683.CrossRefGoogle Scholar
  32. [32]
    Xia, X. Y.; Deng, N.; Cui, G. W.; Xie, J. F.; Shi, X. F.; Zhao, Y. Q.; Wang, Q.; Wang, W.; Tang, B. NIR light induced H2 evolution by a metal-free photocatalyst. Chem. Commun. 2015, 51, 10899–10902.CrossRefGoogle Scholar
  33. [33]
    Ortega-Liebana, M. C.; Hueso, J. L.; Larrea, A.; Sebastian, V.; Santamaria, J. Feroxyhyte nanoflakes coupled to up-converting carbon nanodots: A highly active, magnetically recoverable, Fenton-like photocatalyst in the visible-NIR range. Chem. Commun. 2015, 51, 16625–166288.CrossRefGoogle Scholar
  34. [34]
    Li, H. P.; Liu, J. Y.; Liang, X. F.; Hou, W. G.; Tao, X. T. Enhanced visible light photocatalytic activity of bismuth oxybromide lamellas with decreasing lamella thicknesses. J. Mater. Chem. A 2014, 2, 8926–8932.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xin Ying Kong
    • 1
  • Wen Liang Tan
    • 1
  • Boon-Junn Ng
    • 1
  • Siang-Piao Chai
    • 1
    Email author
  • Abdul Rahman Mohamed
    • 2
  1. 1.Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of EngineeringMonash University, Jalan Lagoon SelatanBandar SunwayMalaysia
  2. 2.Low Carbon Economy (LCE) Group, School of Chemical Engineering, Engineering CampusUniversiti Sains Malaysia, Seri AmpanganNibong TebalMalaysia

Personalised recommendations