Nano Research

, Volume 10, Issue 5, pp 1510–1523 | Cite as

Inducing imperfections in germanium nanowires

Review Article

Abstract

Nanowires with inhomogeneous heterostructures such as polytypes and periodic twin boundaries are interesting due to their potential use as components for optical, electrical, and thermophysical applications. Additionally, the incorporation of metal impurities in semiconductor nanowires could substantially alter their electronic and optical properties. In this highlight article, we review our recent progress and understanding in the deliberate induction of imperfections, in terms of both twin boundaries and additional impurities in germanium nanowires for new/enhanced functionalities. The role of catalysts and catalyst–nanowire interfaces for the growth of engineered nanowires via a three-phase paradigm is explored. Three-phase bottom-up growth is a feasible way to incorporate and engineer imperfections such as crystal defects and impurities in semiconductor nanowires via catalyst and/or interfacial manipulation. “Epitaxial defect transfer” process and catalyst–nanowire interfacial engineering are employed to induce twin defects parallel and perpendicular to the nanowire growth axis. By inducing and manipulating twin boundaries in the metal catalysts, twin formation and density are controlled in Ge nanowires. The formation of Ge polytypes is also observed in nanowires for the growth of highly dense lateral twin boundaries. Additionally, metal impurity in the form of Sn is injected and engineered via third-party metal catalysts resulting in above-equilibrium incorporation of Sn adatoms in Ge nanowires. Sn impurities are precipitated into Ge bi-layers during Ge nanowire growth, where the impurity Sn atoms become trapped with the deposition of successive layers, thus giving an extraordinary Sn content (>6 at.%) in Ge nanowires. A larger amount of Sn impingement (>9 at.%) is further encouraged by utilizing the eutectic solubility of Sn in Ge along with impurity trapping.

Keywords

germanium nanowire VLS growth twinning impurity incorporation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Björk, M. T.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 2, 87–89.CrossRefGoogle Scholar
  2. [2]
    Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.CrossRefGoogle Scholar
  3. [3]
    Léonard, F.; Talin, A. A.; Swartzentruber, B. S.; Picraux, S. T. Diameter-dependent electronic transport properties of Au-catalyst/Ge-nanowire schottky diodes. Phys. Rev. Lett. 2009, 102, 106805.CrossRefGoogle Scholar
  4. [4]
    Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance fieldeffect transistors. Nature 2006, 441, 489–493.CrossRefGoogle Scholar
  5. [5]
    Heath, J. R.; LeGoues, F. K. A liquid solution synthesis of single crystal germanium quantum wires. Chem. Phys. Lett. 1993, 208, 263–268.CrossRefGoogle Scholar
  6. [6]
    Tuan, H. Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A. Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals. Chem. Mater. 2005, 17, 5705–5711.CrossRefGoogle Scholar
  7. [7]
    Petkov, N.; Birjukovs, P.; Phelan, R.; Morris, M. A.; Erts, D.; Holmes, J. D. Growth of ordered arrangements of onedimensional germanium nanostructures with controllable crystallinities. Chem. Mater. 2008, 20, 1902–1908.CrossRefGoogle Scholar
  8. [8]
    Lu, X. M.; Fanfair, D. D.; Johnston, K. P.; Korgel, B. A. High yield solution–liquid–solid synthesis of germanium nanowires. J. Am. Chem. Soc. 2005, 127, 15718–15719.CrossRefGoogle Scholar
  9. [9]
    Andzane, J.; Petkov, N.; Livshits, A. I.; Boland, J. J.; Holmes, J. D.; Erts, D. Two-terminal nanoelectromechanical devices based on germanium nanowires. Nano Lett. 2009, 9, 1824–1829.CrossRefGoogle Scholar
  10. [10]
    Ziegler, K. J.; Lyons, D. M.; Holmes, J. D.; Erts, D.; Polyakov, B.; Olin, H.; Svensson, K.; Olsson, E. Bistable nanoelectromechanical devices. Appl. Phys. Lett. 2004, 84, 4074–4076.CrossRefGoogle Scholar
  11. [11]
    Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4658–4664.CrossRefGoogle Scholar
  12. [12]
    Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.CrossRefGoogle Scholar
  13. [13]
    Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.CrossRefGoogle Scholar
  14. [14]
    Burchhart, T.; Lugstein, A.; Hyun, Y. J.; Hochleitner, G.; Bertagnolli, E. Atomic scale alignment of copper-germanide contacts for Ge nanowire metal oxide field effect transistors. Nano Lett. 2009, 9, 3739–3742.CrossRefGoogle Scholar
  15. [15]
    Garfunkel, E.; Mastrogiovanni, D.; Klein, L.; Wan, A. L.; Du Pasquier, A. Germanium nanowires poly(3-hexylthiophene) composites for photovoltaic applications. In American Chemical Society Division of Polymeric Materials: Science and Engineering, Philadelphia, Pennsylvania, USA, 2008, pp 50–51.Google Scholar
  16. [16]
    Nguyen, P.; Ng, H. T.; Meyyappan, M. Growth of individual vertical germanium nanowires. Adv. Mater. 2005, 17, 549–553.CrossRefGoogle Scholar
  17. [17]
    Cullis, A. G.; Canham, L. T.; Calcott, P. D. J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 1997, 82, 909–965.CrossRefGoogle Scholar
  18. [18]
    Wood, E. L.; Sansoz, F. Growth and properties of coherent twinning superlattice nanowires. Nanoscale 2012, 4, 5268–5276.CrossRefGoogle Scholar
  19. [19]
    Tsuzuki, H.; Cesar, D. F.; de Sousa Dias, M. R.; Castelano, L. K.; Lopez-Richard, V.; Rino, J. P.; Marques, G. E. Tailoring electronic transparency of twin-plane 1D superlattices. ACS Nano 2011, 5, 5519–5525.CrossRefGoogle Scholar
  20. [20]
    Sansoz, F. Surface faceting dependence of thermal transport in silicon nanowires. Nano Lett. 2011, 11, 5378–5382.CrossRefGoogle Scholar
  21. [21]
    Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L.-F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, Elias.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.CrossRefGoogle Scholar
  22. [22]
    Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson, L. Controlled polytypic and twinplane superlattices in III-V nanowires. Nat. Nanotechnol. 2009, 4, 50–55.CrossRefGoogle Scholar
  23. [23]
    Ikonić, Z.; Srivastava, G. P.; Inkson, J. C. Electronic structure of twinning superlattices. Surf. Sci. 1994, 307-309, 880–884.CrossRefGoogle Scholar
  24. [24]
    Ikonic, Z.; Srivastava, G. P.; Inkson, J. C. Optical properties of twinning superlattices in diamond-type and zinc-blendetype semiconductors. Phys. Rev. B 1995, 52, 14078–14085.CrossRefGoogle Scholar
  25. [25]
    Xiong, S. Y.; Kosevich, Y. A.; Sääskilahti, K.; Ni, Y. X.; Volz, S. Tunable thermal conductivity in silicon twinning superlattice nanowires. Phys. Rev. B 2014, 90, 195439.CrossRefGoogle Scholar
  26. [26]
    Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.CrossRefGoogle Scholar
  27. [27]
    Yin, W.-J.; Gong, X.-G.; Wei, S.-H. Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1−x alloys. Phys. Rev. B 2008, 78, 161203.CrossRefGoogle Scholar
  28. [28]
    Chen, R.; Lin, H.; Huo, Y. J.; Hitzman, C.; Kamins, T. I.; Harris, J. S. Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 99, 181125.CrossRefGoogle Scholar
  29. [29]
    Gupta, S.; Magyari-Kope, B.; Nishi, Y.; Saraswat, K. C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J. Appl. Phys. 2013, 113, 073707.CrossRefGoogle Scholar
  30. [30]
    Moontragoon, P.; Soref, R.; Ikonic, Z. The direct and indirect bandgaps of unstrained SixGe1−xySny and their photonic device applications. J. Appl. Phys. 2012, 112, 073106.CrossRefGoogle Scholar
  31. [31]
    Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefGoogle Scholar
  32. [32]
    Biswas, S.; Singha, A.; Morris, M. A.; Holmes, J. D. Inherent control of growth, morphology, and defect formation in germanium nanowires. Nano Lett. 2012, 12, 5654–5663.CrossRefGoogle Scholar
  33. [33]
    Biswas, S.; Doherty, J.; Majumdar, D,; Ghoshal, T.; Rahme, K.; Conroy, M.; Singha, A.; Morris, M. A.; Holmes, J. D. Diameter-controlled germanium nanowires with lamellar twinning and polytypes. Chem. Mater. 2015, 27, 3408–3416.CrossRefGoogle Scholar
  34. [34]
    Biswas, S.; Doherty, D.; Saladukha, D.; Ramasse, Q.; Majumdar, D.; Upmanyu, M.; Singha, A.; Ochalski, T.; Morris, M. A.; Holmes, J. D. Non-equilibrium induction of tin in germanium: Towards direct bandgap Ge1−xSnx nanowires. Nat. Commun. 2016, 7, 11405.CrossRefGoogle Scholar
  35. [35]
    Davidson, F. M., III; Lee, D. C.; Fanfair, D. D.; Korgel, B. A. Lamellar twinning in semiconductor nanowires. J. Phys. Chem. C 2007, 111, 2929–2935.CrossRefGoogle Scholar
  36. [36]
    Johansson, J.; Karlsson, L. S.; Svensson, C. P. T.; Mårtensson, T.; Wacaser, B. A.; Deppert, K.; Samuelson, L.; Seifert, W. Structural properties of (111)B-oriented III-V nanowires. Nat. Mater. 2006, 5, 574–580.CrossRefGoogle Scholar
  37. [37]
    Su, Z. X.; Dickinson, C.; Wan, Y T.; Wang, Z. L.; Wang, Y. W.; Sha, J.; Zhou, W Z. Crystal growth of Si nanowires and formation of longitudinal planar defects. CrystEngComm 2010, 12, 2793–2798.CrossRefGoogle Scholar
  38. [38]
    Liu, X. H.; Wang, D. W. Kinetically-induced hexagonality in chemically grown silicon nanowires. Nano Res. 2009, 2, 575–582.CrossRefGoogle Scholar
  39. [39]
    Conesa-Boj, S. N.; Zardo, I.; Estradé, S.; Wei, L.; Alert, P. J.; Roca i Cabarrocas, P.; Morante, J. R.; Peiró, F.; Fontcuberta i Morral, A.; Arbiol, J. Defect formation in Ga-catalyzed silicon nanowires. Cryst. Growth Des. 2010, 10, 1534–1543.CrossRefGoogle Scholar
  40. [40]
    Cayron, C.; Den Hertog, M.; Latu-Romain, L.; Mouchet, C.; Secouard, C.; Rouviere, J.-L.; Rouviere, E.; Simonato, J.-P. Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins. J. Appl. Cryst. 2009, 42, 242–252.CrossRefGoogle Scholar
  41. [41]
    Dayeh, S. A.; Wang, J.; Li, N.; Huang, J. Y.; Gin, A. V.; Picraux, S. T. Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. Nano Lett. 2011, 11, 4200–4206.CrossRefGoogle Scholar
  42. [42]
    Shin, N.; Chi, M. F.; Filler, M. A. Interplay between defect propagation and surface hydrogen in silicon nanowire kinking superstructures. ACS Nano 2014, 8, 3829–3835.CrossRefGoogle Scholar
  43. [43]
    Morin, S. A.; Jin, S. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates. Nano Lett. 2010, 10, 3459–3463.CrossRefGoogle Scholar
  44. [44]
    Barth, S.; Boland, J. J.; Holmes, J. D. Defect transfer from nanoparticles to nanowires. Nano Lett. 2011, 11, 1550–1555.CrossRefGoogle Scholar
  45. [45]
    Major, S. S., Jr.; Grosskre, J. C. Thermal behavior of stacking faults in silver films. Jpn. J. Appl. Phys. 1968, 7, 574–576.CrossRefGoogle Scholar
  46. [46]
    Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P. Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003, 107, 8717–8720.CrossRefGoogle Scholar
  47. [47]
    Qi, W. H.; Lee, S. T. Phase stability, melting, and alloy formation of Au–Ag bimetallic nanoparticles. J. Phys. Chem. C 2010, 114, 9580–9587.CrossRefGoogle Scholar
  48. [48]
    Rupich, S. M.; Shevchenko, E. V.; Bodnarchuk, M. I.; Lee, B.; Talapin, D. V. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 2010, 132, 289–296.CrossRefGoogle Scholar
  49. [49]
    Hurle, D. T. J.; Rudolph, P. A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. J. Cryst. Growth 2004, 264, 550–564.CrossRefGoogle Scholar
  50. [50]
    Hurle, D. T. J. A mechanism for twin formation during czochralski and encapsulated vertical bridgman growth of III–V compound semiconductors. J. Cryst. Growth 1995, 147, 239–250.CrossRefGoogle Scholar
  51. [51]
    Arbiol, J.; Fontcuberta i Morral, A.; Estradé, S.; Peiró, F.; Kalache, B.; Roca i Cabarrocas, P.; Morante, J. R. Influence of the (111) twinning on the formation of diamond cubic/diamond hexagonal heterostructures in Cu-catalyzed Si nanowires. J. Appl. Phys. 2008, 104, 064312.CrossRefGoogle Scholar
  52. [52]
    Wang, Y. W.; Schmidt, V.; Senz, S.; Gösele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189.CrossRefGoogle Scholar
  53. [53]
    Chou, Y.-C.; Wen, C.-Y.; Reuter, M. C.; Su, D.; Stach, E. A.; Ross, F. M. Controlling the growth of Si/Ge nanowires and heterojunctions using silver–gold alloy catalysts. ACS Nano 2012, 6, 6407–6415.CrossRefGoogle Scholar
  54. [54]
    Shin, N.; Chi, M. F.; Howe, J. Y.; Filler, M. A. Rational defect introduction in silicon nanowires. Nano Lett. 2013, 13, 1928–1933.CrossRefGoogle Scholar
  55. [55]
    Shin, N.; Chi, M. F.; Filler, M. A. Sidewall morphologydependent formation of multiple twins in Si nanowires. ACS Nano 2013, 7, 8206–8213.CrossRefGoogle Scholar
  56. [56]
    Ross, F. M.; Tersoff, J.; Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 2005, 95, 146104.CrossRefGoogle Scholar
  57. [57]
    Jeon, N.; Dayeh, S. A.; Lauhon, L. J. Origin of polytype formation in VLS-grown Ge nanowires through defect generation and nanowire kinking. Nano Lett. 2013, 13, 3947–3952.CrossRefGoogle Scholar
  58. [58]
    Vincent, L.; Patriarche, G.; Hallais, G.; Renard, C.; Gardès, C.; Troadec, D.; Bouchier, D. Novel heterostructured Ge nanowires based on polytype transformation. Nano Lett. 2014, 14, 4828–4836.CrossRefGoogle Scholar
  59. [59]
    Akopian, N.; Patriarche, G.; Liu, L.; Harmand, J.-C.; Zwiller, V. Crystal phase quantum dots. Nano Lett. 2010, 10, 1198–1201.CrossRefGoogle Scholar
  60. [60]
    Dillen, D. C.; Varahramyan, K. M.; Corbet, C. M.; Tutuc, E. Raman spectroscopy and strain mapping in individual Ge-SixGe1–x core-shell nanowires. Phys. Rev. B 2012, 86, 045311.CrossRefGoogle Scholar
  61. [61]
    López-Cruz, E.; Cardona, M. Raman spectra of two new modifications of germanium: Allo-germanium and 4H-Ge. Solid State Commun. 1983, 45, 787–789.CrossRefGoogle Scholar
  62. [62]
    Chen, W. H.; Yu, L. W.; Misra, S.; Fan, Z.; Pareige, P.; Patriarche, G.; Bouchoule, S.; Roca i Cabarrocas, P. Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth. Nat. Commun. 2014, 5, 4134.Google Scholar
  63. [63]
    Moutanabbir, O.; Isheim, D.; Blumtritt, H.; Senz, S.; Pippel, E.; Seidman, D. N. Colossal injection of catalyst atoms into silicon nanowires. Nature 2013, 496, 78–82.CrossRefGoogle Scholar
  64. [64]
    Biswas, S.; O’Regan, C.; Petkov, N.; Morris, M. A.; Holmes, J. D. Manipulating the growth kinetics of vapor–liquid–solid propagated Ge nanowires. Nano Lett. 2013, 13, 4044–4052.CrossRefGoogle Scholar
  65. [65]
    Biswas, S.; O'Regan, C.; Morris, M. A.; Holmes, J. D. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys. Small 2015, 11, 103–111.CrossRefGoogle Scholar
  66. [66]
    Wang, H. L.; Zepeda-Ruiz, L. A.; Gilmer, G. H.; Upmanyu, M. Atomistics of vapour-liquid-solid nanowire growth. Nat. Commun. 2013, 4, 1956.Google Scholar
  67. [67]
    Ciulik, J.; Notis, M. R. The Au-Sn phase-diagram. J. Alloys Compd. 1993, 191, 71–78.CrossRefGoogle Scholar
  68. [68]
    Nakamura, J.; Natori, A. Dielectric discontinuity at structural boundaries in Si. Appl. Phys. Lett. 2006, 89, 053118.CrossRefGoogle Scholar
  69. [69]
    Ouyang, G.; Wang, C. X.; Yang, G. W. Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev. 2009, 109, 4221–4247.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Materials Chemistry & Analysis Group, Department of Chemistry and the Tyndall National InstituteUniversity College CorkCorkIreland
  2. 2.AMBER@CRANNTrinity College DublinDublin 2Ireland
  3. 3.Vienna University of Technology, Institute of Materials ChemistryViennaAustria

Personalised recommendations