Nano Research

, Volume 10, Issue 7, pp 2311–2320 | Cite as

Unravelling a solution-based formation of single-crystalline kinked wurtzite nanowires: The case of MnSe

  • Xinyi Yang
  • Bo Zhou
  • Chuang Liu
  • Yongming Sui
  • Guanjun Xiao
  • Yingjin Wei
  • Xin Wang
  • Bo Zou
Research Article


The search for a novel strategy to sculpt semiconductor nanowires (NWs) at the atomistic scale is crucial for the development of new paradigms in optics, electronics, and spintronics. Thus far, the fabrication of single-crystalline kinked semiconductor NWs has been achieved mainly through the vapor−liquid−solid growth technique. In this study, we developed a new strategy for sculpting single-crystalline kinked wurtzite (WZ) MnSe NWs by triggering the nonpolar axial-oriented growth, thereby switching—at the atomistic scale—the NW growth orientation along the nonpolar axes in a facile solution-based procedure. This presents substantial challenges owing to the dominant polar c axis growth in the solution-based synthesis of one-dimensional WZ nanocrystals. More significantly, the ability to continuously switch the nonpolar axial-growth orientation allowed us to craft the kinking landscape of types 150°, 120°, 90°, and 60°. A probabilistic analysis of kinked MnSe NWs reveals the correlations of the synergy and interplay between these two sets of nonpolar axial growth-orientation switching, which determine the actual kinked motifs. Furthermore, discriminating the side-facet structures of the kinked NWs significantly strengthened the spatially selected interaction of Au nanoparticles. We envisage that such a facile solution-based strategy can be useful for synthesizing other single-crystalline kinked WZ-type transition-metal dichalcogenide NWs to develop novel functional materials with finely tuned properties.


kinked nanowires single-crystalline nonpolar axial growth wurtzite MnSe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study is supported by the National Natural Science Foundation of China (Nos. 91227202, 21673100 and 11504126), the RFDP (No. 20120061130006), Changbai Mountain scholars program (No. 2013007), Program for Innovative Research Team (in Science and Technology) in University of Jilin Province, the China Postdoctoral Science Foundation (No. 2014M561281).

Supplementary material

12274_2017_1424_MOESM1_ESM.pdf (1.8 mb)
Unravelling a solution-based formation of single-crystalline kinked wurtzite nanowires: The case of MnSe


  1. [1]
    Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.CrossRefGoogle Scholar
  2. [2]
    Zhu, J.; Peng, H. L.; Marshall, A. F.; Barnett, D. M.; Nix, W. D.; Cui, Y. Formation of chiral branched nanowires by the eshelby twist. Nat. Nanotechnol. 2008, 3, 477–481.CrossRefGoogle Scholar
  3. [3]
    Xiao, G. J.; Yang, X. Y.; Zhang, X. X.; Wang, K.; Huang, X. L.; Ding, Z. H.; Ma, Y. M.; Zou, G. T.; Zou, B. A protocol to fabricate nanostructured new phase: B31-type MnS synthesized under high pressure. J. Am. Chem. Soc. 2015, 137, 10297–10303.CrossRefGoogle Scholar
  4. [4]
    Zhang, L.; Yang, Q. Kinetic growth of ultralong metastable zincblende MnSe nanowires catalyzed by a fast ionic conductor via a solution-solid-solid mechanism. Nano Lett. 2016, 16, 4008–4013.CrossRefGoogle Scholar
  5. [5]
    Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.CrossRefGoogle Scholar
  6. [6]
    Musin, I. R.; Filler, M. A. Chemical control of semiconductor nanowire kinking and superstructure. Nano Lett. 2012, 12, 3363-3368.CrossRefGoogle Scholar
  7. [7]
    Wu, X. J.; Zeng, X. C. Sawtooth-like graphene nanoribbon. Nano Res. 2008, 1, 40-45.CrossRefGoogle Scholar
  8. [8]
    Cooley, B. J.; Clark, T. E.; Liu, B. Z.; Eichfeld, C. M.; Dickey, E. C.; Mohney, S. E.; Crooker, S. A.; Samarth, N. Growth of magneto-optically active (Zn, Mn)Se nanowires. Nano Lett. 2009, 9, 3142-3146.CrossRefGoogle Scholar
  9. [9]
    Sun, L. X.; Kim, D. H.; Oh, K. H.; Agarwal, R. Strain-induced large exciton energy shifts in buckled CdS nanowires. Nano Lett. 2013, 13, 3836-3842.CrossRefGoogle Scholar
  10. [10]
    Fu, Q.; Zhang, Z. Y.; Kou, L. Z.; Wu, P. C.; Han, X. B.; Zhu, X. L.; Gao, J. Y.; Xu, J.; Zhao, Q.; Guo, W. L. et al. Linear strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res. 2011, 4, 308–314.CrossRefGoogle Scholar
  11. [11]
    Madras, P.; Dailey, E.; Drucker, J. Kinetically induced kinking of vapor-liquid-solid grown epitaxial Si nanowires. Nano Lett. 2009, 9, 3826–3830.CrossRefGoogle Scholar
  12. [12]
    Shen, G. Z.; Liang, B.; Wang, X. F.; Chen, P. C.; Zhou, C. W. Indium oxide nanospirals made of kinked nanowires. ACS Nano 2011, 5, 2155–2161.CrossRefGoogle Scholar
  13. [13]
    Li, Y. Y.; Wang, Y. M.; Ryu, S.; Marshall, A. F.; Cai, W.; McIntyre, P. C. Spontaneous, defect-free kinking via capillary instability during vapor–liquid–solid nanowire growth. Nano Lett. 2016, 16, 1713–1718.CrossRefGoogle Scholar
  14. [14]
    Wang, Y. H. A.; Zhang, X. Y.; Bao, N. Z.; Lin, B. P.; Gupta, A. Synthesis of shape-controlled monodisperse wurtzite CuInxGa1–xS2 semiconductor nanocrystals with tunable band gap. J. Am. Chem. Soc. 2011, 133, 11072–11075.CrossRefGoogle Scholar
  15. [15]
    Sines, I. T.; Misra, R.; Schiffer, P.; Schaak, R. E. Colloidal synthesis of non-equilibrium wurtzite-type MnSe. Angew. Chem., Int. Ed. 2010, 49, 4638–4640.CrossRefGoogle Scholar
  16. [16]
    Talapin, D. V.; Lee, J. S.; Kovalenko, M. V; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.CrossRefGoogle Scholar
  17. [17]
    Zhou, B.; Yang, X. Y.; Sui, Y. M.; Xiao, G. J.; Wei, Y. J.; Zou, B. Alternative motif toward high-quality wurtzite MnSe nanorods via subtle sulfur element doping. Nanoscale 2016, 8, 8784–8790.CrossRefGoogle Scholar
  18. [18]
    Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.CrossRefGoogle Scholar
  19. [19]
    Yang, X. Y.; Wang, Y. N.; Wang, K.; Sui, Y. M.; Zhang, M. G.; Li, B.; Ma, Y. M.; Liu, B. B.; Zou, G. T.; Zou, B. Polymorphism and formation mechanism of nanobipods in manganese sulfide nanocrystals induced by temperature or pressure. J. Phys. Chem. C 2012, 116, 3292–3297.CrossRefGoogle Scholar
  20. [20]
    Hu, J. Q.; Bando, Y.; Golberg, D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small 2005, 1, 95–99.CrossRefGoogle Scholar
  21. [21]
    Zhuang, T. T.; Yu, P.; Fan, F. J.; Wu, L.; Liu, X. J.; Yu, S. H. Controlled synthesis of kinked ultrathin ZnS nanorods/ nanowires triggered by chloride ions: A case study. Small 2014, 10, 1394–1402.CrossRefGoogle Scholar
  22. [22]
    Zanolli, Z.; Fuchs, F.; Furthmüller, J.; von Barth, U.; Bechstedt, F. Model GWband structure of InAs and GaAs in the wurtzite phase. Phys. Rev. B 2007, 75, 245121.CrossRefGoogle Scholar
  23. [23]
    Rieger, T.; Rosenbach, D.; Vakulov, D.; Heedt, S.; Schäpers, T.; Grützmacher, D.; Lepsa, M. I. Crystal phase transformation in self-assembled InAs nanowire junctions on patterned Si substrates. Nano Lett. 2016, 16, 1933–1941.CrossRefGoogle Scholar
  24. [24]
    Fu, M. Q.; Tang, Z. Q.; Li, X.; Ning, Z. Y.; Pan, D.; Zhao, J. H.; Wei, X. L.; Chen, Q. Crystal phase- and orientationdependent electrical transport properties of InAs nanowires. Nano Lett. 2016, 16, 2478–2484.CrossRefGoogle Scholar
  25. [25]
    Litvinov, D.; Gerthsen, D.; Rosenauer, A.; Daniel, B.; Hetterich, M. Sphalerite–rock salt phase transition in ZnMnSe heterostructures. Appl. Phys. Lett. 2004, 85, 751–753.CrossRefGoogle Scholar
  26. [26]
    Heimbrodt, W.; Goede, O.; Tschentsher, I.; Weinhold, V.; Klimakow, A.; Pohl, U.; Jacobs, K.; Hoffmann, N. Optical study of octahedrally and tetrahedrally coordinated MnSe. Phys. B 1993, 185, 357–361.CrossRefGoogle Scholar
  27. [27]
    Peng, Q.; Dong, Y. J.; Deng, Z. X.; Kou, H. Z.; Gao, S.; Li, Y. D. Selective synthesis and magnetic properties of a-MnSe and MnSe2 uniform microcrystals. J. Phys. Chem. B 2002, 106, 9261–9265.CrossRefGoogle Scholar
  28. [28]
    Yang, X. Y.; Wang, Y. N.; Sui, Y. M.; Huang, X. L.; Cui, T.; Wang, C. Z.; Liu, B. B.; Zou, G. T.; Zou, B. Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: Optical and magnetic properties. CrystEngComm 2012, 14, 6916-6920.CrossRefGoogle Scholar
  29. [29]
    Zhang, J.; Zhang, F.; Zhao, X. B.; Wang, X. R.; Yin, L. F.; Liang, C. Y.; Wang, M.; Li, Y.; Liu, J. W.; Wu, Q. S. et al. Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior. Nano Res. 2013, 6, 275–285.CrossRefGoogle Scholar
  30. [30]
    Peng, Y. K.; Ye, L.; Qu, J.; Zhang, L.; Fu, Y. Y.; Teixeira, I. F.; McPherson, I. J.; He, H. Y.; Tsang, S. C. E. Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: A zinc oxide case study. J. Am. Chem. Soc. 2016, 138, 2225–2234.CrossRefGoogle Scholar
  31. [31]
    Wang, J. L.; Chen, K. M.; Gong, M.; Xu, B.; Yang, Q. Solution–solid–solid mechanism: Superionic conductors catalyze nanowire growth. Nano Lett. 2013, 13, 3996-4000.CrossRefGoogle Scholar
  32. [32]
    Wang, F. D.; Buhro, W. E. Crystal-phase control by solutionsolid- solid growth of II-VI quantum wires. Nano Lett. 2016, 16, 889-894.CrossRefGoogle Scholar
  33. [33]
    Kirchhoff, F.; Holender, J. M.; Gillan, M. J. Structure, dynamics, and electronic structure of liquid Ag-Se alloys investigated by ab initio simulation. Phys. Rev. B 1996, 54, 190-202.CrossRefGoogle Scholar
  34. [34]
    Goren-Ruck, L.; Tsivion, D.; Schvartzman, M.; Popovitz- Biro, R.; Joselevich, E. Guided growth of horizontal GaN nanowires on quartz and their transfer to other substrates. ACS Nano 2014, 8, 2838–2847.CrossRefGoogle Scholar
  35. [35]
    Zhou, J. C.; Huang, F.; Xu, J.; Wang, Y. S. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts. Nanoscale 2013, 5, 9714–9719.CrossRefGoogle Scholar
  36. [36]
    Vaneski, A.; Susha, A. S.; Rodríguez-Ferná ndez, J.; Berr, M.; Jä ckel, F.; Feldmann, J.; Rogach, A. L. Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: Synthesis and function. Adv. Funct. Mater. 2011, 21, 1547–1556.CrossRefGoogle Scholar
  37. [37]
    Jiang, M. W.; Liu, W.; Yang, X. L.; Jiang, Z.; Yao, T.; Wei, S. Q.; Peng, X. G. Pt/Fe3O4 core/shell triangular nanoprisms by heteroepitaxy: Facet selectivity at the Pt-Fe3O4 interface and the Fe3O4 outer surface. ACS Nano 2015, 9, 10950–10960.CrossRefGoogle Scholar
  38. [38]
    Xu, Y. M.; Li, Q. Heterostructured CIGS–Au nanoparticles: From Au–CIGS side-by-side structure to Au-core/CIGS-shell configuration. Nanoscale 2011, 3, 3238–3243.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xinyi Yang
    • 1
  • Bo Zhou
    • 1
  • Chuang Liu
    • 1
  • Yongming Sui
    • 1
  • Guanjun Xiao
    • 1
  • Yingjin Wei
    • 2
  • Xin Wang
    • 3
  • Bo Zou
    • 1
  1. 1.State Key Laboratory of Superhard MaterialsJilin UniversityChangchunChina
  2. 2.Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education)Jilin UniversityChangchunChina
  3. 3.College of PhysicsJilin UniversityChangchunChina

Personalised recommendations