Nano Research

, Volume 10, Issue 7, pp 2311–2320 | Cite as

Unravelling a solution-based formation of single-crystalline kinked wurtzite nanowires: The case of MnSe

  • Xinyi Yang
  • Bo Zhou
  • Chuang Liu
  • Yongming Sui
  • Guanjun Xiao
  • Yingjin Wei
  • Xin Wang
  • Bo Zou
Research Article


The search for a novel strategy to sculpt semiconductor nanowires (NWs) at the atomistic scale is crucial for the development of new paradigms in optics, electronics, and spintronics. Thus far, the fabrication of single-crystalline kinked semiconductor NWs has been achieved mainly through the vapor−liquid−solid growth technique. In this study, we developed a new strategy for sculpting single-crystalline kinked wurtzite (WZ) MnSe NWs by triggering the nonpolar axial-oriented growth, thereby switching—at the atomistic scale—the NW growth orientation along the nonpolar axes in a facile solution-based procedure. This presents substantial challenges owing to the dominant polar c axis growth in the solution-based synthesis of one-dimensional WZ nanocrystals. More significantly, the ability to continuously switch the nonpolar axial-growth orientation allowed us to craft the kinking landscape of types 150°, 120°, 90°, and 60°. A probabilistic analysis of kinked MnSe NWs reveals the correlations of the synergy and interplay between these two sets of nonpolar axial growth-orientation switching, which determine the actual kinked motifs. Furthermore, discriminating the side-facet structures of the kinked NWs significantly strengthened the spatially selected interaction of Au nanoparticles. We envisage that such a facile solution-based strategy can be useful for synthesizing other single-crystalline kinked WZ-type transition-metal dichalcogenide NWs to develop novel functional materials with finely tuned properties.


kinked nanowires single-crystalline nonpolar axial growth wurtzite MnSe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1424_MOESM1_ESM.pdf (1.8 mb)
Unravelling a solution-based formation of single-crystalline kinked wurtzite nanowires: The case of MnSe


  1. [1]
    Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.CrossRefGoogle Scholar
  2. [2]
    Zhu, J.; Peng, H. L.; Marshall, A. F.; Barnett, D. M.; Nix, W. D.; Cui, Y. Formation of chiral branched nanowires by the eshelby twist. Nat. Nanotechnol. 2008, 3, 477–481.CrossRefGoogle Scholar
  3. [3]
    Xiao, G. J.; Yang, X. Y.; Zhang, X. X.; Wang, K.; Huang, X. L.; Ding, Z. H.; Ma, Y. M.; Zou, G. T.; Zou, B. A protocol to fabricate nanostructured new phase: B31-type MnS synthesized under high pressure. J. Am. Chem. Soc. 2015, 137, 10297–10303.CrossRefGoogle Scholar
  4. [4]
    Zhang, L.; Yang, Q. Kinetic growth of ultralong metastable zincblende MnSe nanowires catalyzed by a fast ionic conductor via a solution-solid-solid mechanism. Nano Lett. 2016, 16, 4008–4013.CrossRefGoogle Scholar
  5. [5]
    Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.CrossRefGoogle Scholar
  6. [6]
    Musin, I. R.; Filler, M. A. Chemical control of semiconductor nanowire kinking and superstructure. Nano Lett. 2012, 12, 3363-3368.CrossRefGoogle Scholar
  7. [7]
    Wu, X. J.; Zeng, X. C. Sawtooth-like graphene nanoribbon. Nano Res. 2008, 1, 40-45.CrossRefGoogle Scholar
  8. [8]
    Cooley, B. J.; Clark, T. E.; Liu, B. Z.; Eichfeld, C. M.; Dickey, E. C.; Mohney, S. E.; Crooker, S. A.; Samarth, N. Growth of magneto-optically active (Zn, Mn)Se nanowires. Nano Lett. 2009, 9, 3142-3146.CrossRefGoogle Scholar
  9. [9]
    Sun, L. X.; Kim, D. H.; Oh, K. H.; Agarwal, R. Strain-induced large exciton energy shifts in buckled CdS nanowires. Nano Lett. 2013, 13, 3836-3842.CrossRefGoogle Scholar
  10. [10]
    Fu, Q.; Zhang, Z. Y.; Kou, L. Z.; Wu, P. C.; Han, X. B.; Zhu, X. L.; Gao, J. Y.; Xu, J.; Zhao, Q.; Guo, W. L. et al. Linear strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res. 2011, 4, 308–314.CrossRefGoogle Scholar
  11. [11]
    Madras, P.; Dailey, E.; Drucker, J. Kinetically induced kinking of vapor-liquid-solid grown epitaxial Si nanowires. Nano Lett. 2009, 9, 3826–3830.CrossRefGoogle Scholar
  12. [12]
    Shen, G. Z.; Liang, B.; Wang, X. F.; Chen, P. C.; Zhou, C. W. Indium oxide nanospirals made of kinked nanowires. ACS Nano 2011, 5, 2155–2161.CrossRefGoogle Scholar
  13. [13]
    Li, Y. Y.; Wang, Y. M.; Ryu, S.; Marshall, A. F.; Cai, W.; McIntyre, P. C. Spontaneous, defect-free kinking via capillary instability during vapor–liquid–solid nanowire growth. Nano Lett. 2016, 16, 1713–1718.CrossRefGoogle Scholar
  14. [14]
    Wang, Y. H. A.; Zhang, X. Y.; Bao, N. Z.; Lin, B. P.; Gupta, A. Synthesis of shape-controlled monodisperse wurtzite CuInxGa1–xS2 semiconductor nanocrystals with tunable band gap. J. Am. Chem. Soc. 2011, 133, 11072–11075.CrossRefGoogle Scholar
  15. [15]
    Sines, I. T.; Misra, R.; Schiffer, P.; Schaak, R. E. Colloidal synthesis of non-equilibrium wurtzite-type MnSe. Angew. Chem., Int. Ed. 2010, 49, 4638–4640.CrossRefGoogle Scholar
  16. [16]
    Talapin, D. V.; Lee, J. S.; Kovalenko, M. V; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.CrossRefGoogle Scholar
  17. [17]
    Zhou, B.; Yang, X. Y.; Sui, Y. M.; Xiao, G. J.; Wei, Y. J.; Zou, B. Alternative motif toward high-quality wurtzite MnSe nanorods via subtle sulfur element doping. Nanoscale 2016, 8, 8784–8790.CrossRefGoogle Scholar
  18. [18]
    Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.CrossRefGoogle Scholar
  19. [19]
    Yang, X. Y.; Wang, Y. N.; Wang, K.; Sui, Y. M.; Zhang, M. G.; Li, B.; Ma, Y. M.; Liu, B. B.; Zou, G. T.; Zou, B. Polymorphism and formation mechanism of nanobipods in manganese sulfide nanocrystals induced by temperature or pressure. J. Phys. Chem. C 2012, 116, 3292–3297.CrossRefGoogle Scholar
  20. [20]
    Hu, J. Q.; Bando, Y.; Golberg, D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small 2005, 1, 95–99.CrossRefGoogle Scholar
  21. [21]
    Zhuang, T. T.; Yu, P.; Fan, F. J.; Wu, L.; Liu, X. J.; Yu, S. H. Controlled synthesis of kinked ultrathin ZnS nanorods/ nanowires triggered by chloride ions: A case study. Small 2014, 10, 1394–1402.CrossRefGoogle Scholar
  22. [22]
    Zanolli, Z.; Fuchs, F.; Furthmüller, J.; von Barth, U.; Bechstedt, F. Model GWband structure of InAs and GaAs in the wurtzite phase. Phys. Rev. B 2007, 75, 245121.CrossRefGoogle Scholar
  23. [23]
    Rieger, T.; Rosenbach, D.; Vakulov, D.; Heedt, S.; Schäpers, T.; Grützmacher, D.; Lepsa, M. I. Crystal phase transformation in self-assembled InAs nanowire junctions on patterned Si substrates. Nano Lett. 2016, 16, 1933–1941.CrossRefGoogle Scholar
  24. [24]
    Fu, M. Q.; Tang, Z. Q.; Li, X.; Ning, Z. Y.; Pan, D.; Zhao, J. H.; Wei, X. L.; Chen, Q. Crystal phase- and orientationdependent electrical transport properties of InAs nanowires. Nano Lett. 2016, 16, 2478–2484.CrossRefGoogle Scholar
  25. [25]
    Litvinov, D.; Gerthsen, D.; Rosenauer, A.; Daniel, B.; Hetterich, M. Sphalerite–rock salt phase transition in ZnMnSe heterostructures. Appl. Phys. Lett. 2004, 85, 751–753.CrossRefGoogle Scholar
  26. [26]
    Heimbrodt, W.; Goede, O.; Tschentsher, I.; Weinhold, V.; Klimakow, A.; Pohl, U.; Jacobs, K.; Hoffmann, N. Optical study of octahedrally and tetrahedrally coordinated MnSe. Phys. B 1993, 185, 357–361.CrossRefGoogle Scholar
  27. [27]
    Peng, Q.; Dong, Y. J.; Deng, Z. X.; Kou, H. Z.; Gao, S.; Li, Y. D. Selective synthesis and magnetic properties of a-MnSe and MnSe2 uniform microcrystals. J. Phys. Chem. B 2002, 106, 9261–9265.CrossRefGoogle Scholar
  28. [28]
    Yang, X. Y.; Wang, Y. N.; Sui, Y. M.; Huang, X. L.; Cui, T.; Wang, C. Z.; Liu, B. B.; Zou, G. T.; Zou, B. Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: Optical and magnetic properties. CrystEngComm 2012, 14, 6916-6920.CrossRefGoogle Scholar
  29. [29]
    Zhang, J.; Zhang, F.; Zhao, X. B.; Wang, X. R.; Yin, L. F.; Liang, C. Y.; Wang, M.; Li, Y.; Liu, J. W.; Wu, Q. S. et al. Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior. Nano Res. 2013, 6, 275–285.CrossRefGoogle Scholar
  30. [30]
    Peng, Y. K.; Ye, L.; Qu, J.; Zhang, L.; Fu, Y. Y.; Teixeira, I. F.; McPherson, I. J.; He, H. Y.; Tsang, S. C. E. Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: A zinc oxide case study. J. Am. Chem. Soc. 2016, 138, 2225–2234.CrossRefGoogle Scholar
  31. [31]
    Wang, J. L.; Chen, K. M.; Gong, M.; Xu, B.; Yang, Q. Solution–solid–solid mechanism: Superionic conductors catalyze nanowire growth. Nano Lett. 2013, 13, 3996-4000.CrossRefGoogle Scholar
  32. [32]
    Wang, F. D.; Buhro, W. E. Crystal-phase control by solutionsolid- solid growth of II-VI quantum wires. Nano Lett. 2016, 16, 889-894.CrossRefGoogle Scholar
  33. [33]
    Kirchhoff, F.; Holender, J. M.; Gillan, M. J. Structure, dynamics, and electronic structure of liquid Ag-Se alloys investigated by ab initio simulation. Phys. Rev. B 1996, 54, 190-202.CrossRefGoogle Scholar
  34. [34]
    Goren-Ruck, L.; Tsivion, D.; Schvartzman, M.; Popovitz- Biro, R.; Joselevich, E. Guided growth of horizontal GaN nanowires on quartz and their transfer to other substrates. ACS Nano 2014, 8, 2838–2847.CrossRefGoogle Scholar
  35. [35]
    Zhou, J. C.; Huang, F.; Xu, J.; Wang, Y. S. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts. Nanoscale 2013, 5, 9714–9719.CrossRefGoogle Scholar
  36. [36]
    Vaneski, A.; Susha, A. S.; Rodríguez-Ferná ndez, J.; Berr, M.; Jä ckel, F.; Feldmann, J.; Rogach, A. L. Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: Synthesis and function. Adv. Funct. Mater. 2011, 21, 1547–1556.CrossRefGoogle Scholar
  37. [37]
    Jiang, M. W.; Liu, W.; Yang, X. L.; Jiang, Z.; Yao, T.; Wei, S. Q.; Peng, X. G. Pt/Fe3O4 core/shell triangular nanoprisms by heteroepitaxy: Facet selectivity at the Pt-Fe3O4 interface and the Fe3O4 outer surface. ACS Nano 2015, 9, 10950–10960.CrossRefGoogle Scholar
  38. [38]
    Xu, Y. M.; Li, Q. Heterostructured CIGS–Au nanoparticles: From Au–CIGS side-by-side structure to Au-core/CIGS-shell configuration. Nanoscale 2011, 3, 3238–3243.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xinyi Yang
    • 1
  • Bo Zhou
    • 1
  • Chuang Liu
    • 1
  • Yongming Sui
    • 1
  • Guanjun Xiao
    • 1
  • Yingjin Wei
    • 2
  • Xin Wang
    • 3
  • Bo Zou
    • 1
  1. 1.State Key Laboratory of Superhard MaterialsJilin UniversityChangchunChina
  2. 2.Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education)Jilin UniversityChangchunChina
  3. 3.College of PhysicsJilin UniversityChangchunChina

Personalised recommendations