Skip to main content

Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions

Abstract

Creating pores in suprastructures of two-dimensional (2D) materials while controlling the orientation of the 2D building blocks is important in achieving large specific surface areas and tuning the anisotropic properties of the obtained functional hierarchical structures. In this contribution, we report that arranging graphitic carbon nitride (g-C3N4) nanosheets into one-dimensional (1D) architectures with controlled orientation has been achieved by using 1D oriented melem hydrate fibers as the synthetic precursor via a polycondensation process, during which the removal of water molecules and release of ammonia gas led to the creation of pores without destroying the 1D morphology of the oriented structures. The resulting porous g-C3N4 fibers with both meso- and micro-sized pores and largely exposed edges exhibited good sensing sensitivity and selectivity towards NO2. The sensing performance was further improved by hybridization of the porous fibers with Au nanoparticles (Au NPs), leading to a detection limit of 60 ppb under ambient conditions. Our results suggest that the highly porous g-C3N4 fibers and the related hybrid structures with largely exposed graphitic layer edges are excellent sensing platforms and may also show promise in other electronic and electrochemical applications.

This is a preview of subscription content, access via your institution.

References

  1. Zhou, Z. X.; Wang, J. H.; Yu, J. C.; Shen, Y. F.; Li, Y.; Liu, A. R.; Liu, S. Q.; Zhang, Y. J. Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J. Am. Chem. Soc. 2015, 137, 2179–2182.

    Article  Google Scholar 

  2. Zhang, J. S.; Zhang, M. W.; Lin, L. H.; Wang, X. C. Sol processing of conjugated carbon nitride powders for thinfilm fabrication. Angew. Chem., Int. Ed. 2015, 54, 6297–6301.

    Article  Google Scholar 

  3. Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

    Article  Google Scholar 

  4. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

    Google Scholar 

  5. Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.

    Article  Google Scholar 

  6. Bai, X. J.; Wang, L.; Zong, R. L.; Zhu, Y. F. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 2013, 117, 9952–9961.

    Article  Google Scholar 

  7. Holst, J. R.; Gillan, G. E. From triazines to heptazines: Deciphering the local structure of amorphous nitrogen-rich carbon nitride materials. J. Am. Chem. Soc. 2008, 130, 7373–7379.

    Article  Google Scholar 

  8. Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater. 2016, 6, 1601273.

    Article  Google Scholar 

  9. Zada, A.; Humayun, M.; Raziq, F.; Zhang, X. L.; Qu, Y.; Bai, L. L.; Qin, C. L.; Jing, L. Q.; Fu, H. G. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190.

    Article  Google Scholar 

  10. Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2012, 51, 68–89.

    Article  Google Scholar 

  11. Zheng, Y.; Lin, L. H.; Ye, X. J.; Guo, F. S.; Wang, X. C. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem., Int. Ed. 2014, 53, 11926–11930.

    Article  Google Scholar 

  12. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Google Scholar 

  13. Wang, Y.; Yao, J.; Li, H. R.; Su, D. S.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362–2365.

    Article  Google Scholar 

  14. Lau, V. W. H.; Mesch, M. B.; Duppel, V.; Blum, V.; Senker, J.; Lotsch, B. V. Low-molecular-weight carbon nitrides for solar hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 1064–1072.

    Article  Google Scholar 

  15. Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121.

    Article  Google Scholar 

  16. Zhang, H. Q.; Huang, Y. H.; Hu, S. R.; Huang, Q. T.; Wei, C.; Zhang, W. X.; Kang, L. P.; Huang, Z. Y.; Hao, A. Y. Fluorescent probes for “off–on” sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets. J. Mater. Chem. C 2015, 3, 2093–2100.

    Article  Google Scholar 

  17. Rong, M. C.; Lin, L. P.; Song, X. H.; Wang, Y. R.; Zhong, Y. X.; Yan, J. W.; Feng, Y. F.; Zeng, X. Y.; Chen, X. Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens. Bioelectron. 2015, 68, 210–217.

    Article  Google Scholar 

  18. Zelisko, M.; Hanlumyuang, Y.; Yang, S. B.; Liu, Y. M.; Lei, C. H.; Li, J. Y.; Ajayan, P. M.; Sharma, P. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun. 2014, 5, 4284.

    Article  Google Scholar 

  19. Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005, 17, 1789–1792.

    Article  Google Scholar 

  20. Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/ carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

    Article  Google Scholar 

  21. Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 20116–20119.

    Article  Google Scholar 

  22. Zheng, D. D.; Pang, C. Y.; Liu, Y. X.; Wang, X. C. Shellengineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chem. Commun. 2015, 51, 9706–9709.

    Article  Google Scholar 

  23. Zhao, Z. K.; Dai, Y. T.; Li, J. H.; Wang, G. R. Highly-ordered mesoporous carbon nitride with ultrahigh surface area and pore volume as a superior dehydrogenation catalyst. Chem. Mater. 2014, 26, 3151–3161.

    Article  Google Scholar 

  24. Hu, M.; Reboul, J.; Furukawa, S.; Radhakrishnan, L.; Zhang, Y. J.; Srinivasu, P.; Iwai, H.; Wang, H. J.; Nemoto, Y.; Suzuki, N. et al. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chem. Commun. 2011, 47, 8124–8126.

    Article  Google Scholar 

  25. Liang, Q. H.; Ye, L.; Xu, Q.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon 2015, 94, 342–348.

    Article  Google Scholar 

  26. Zhai, H. S.; Cao, L.; Xia, X. H. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin. Chem. Lett. 2013, 24, 103–106.

    Article  Google Scholar 

  27. Dong, F.; Ou, M. Y.; Jiang, Y. K.; Guo, S.; Wu, Z. B. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind. Eng. Chem. Res. 2014, 53, 2318–2330.

    Article  Google Scholar 

  28. Kailasam, K.; Epping, J. D.; Thomas, A.; Losse, S.; Junge, H. Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ. Sci. 2011, 4, 4668–4674.

    Article  Google Scholar 

  29. Kim, J. S.; Yoo, H. W.; Choi, H. O.; Jung, H. T. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 2014, 14, 5941–5947.

    Article  Google Scholar 

  30. Kim, K.; Lee, H. B. R.; Johnson, R. W.; Tanskanen, J. T.; Liu, N.; Kim, M. G.; Pang, C.; Ahn, C.; Bent, S. F.; Bao, Z. N. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun. 2014, 5, 4781.

    Article  Google Scholar 

  31. Kulkarni, G. S.; Reddy, K.; Zhong, Z. H.; Fan, X. D. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun. 2014, 5, 4376.

    Article  Google Scholar 

  32. Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.

    Article  Google Scholar 

  33. Cho, S. Y.; Yoo, H. W.; Kim, J. Y.; Jung, W. B.; Jin, M. L.; Kim, J. S.; Jeon, H. J.; Jung, H. T. High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Lett. 2016, 16, 4508–4515.

    Article  Google Scholar 

  34. Liu, J.; Wang, H. Q.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo) catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326.

    Article  Google Scholar 

  35. Zhang, Y. F.; Bo, X. J.; Nsabimana, A.; Luhana, C.; Wang, G.; Wang, H.; Li, M.; Guo, L. P. Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection. Biosens. Bioelectron. 2014, 53, 250–256.

    Article  Google Scholar 

  36. Zhang, H. Q.; Huang, Q. T.; Huang, Y. H.; Li, F. M.; Zhang, W. X.; Wei, C.; Chen, J. H.; Dai, P. W.; Huang, L. Z.; Huang, Z. Y. et al. Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta 2014, 142, 125–131.

    Article  Google Scholar 

  37. Kundu, M. K.; Sadhukhan, M.; Barman, S. Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose. J. Mater. Chem. B 2015, 3, 1289–1300.

    Article  Google Scholar 

  38. Lee, E. Z.; Jun, Y. S.; Hong, W. H.; Thomas, A.; Jin, M. M. Cubic mesoporous graphitic carbon(IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. Angew. Chem., Int. Ed. 2010, 49, 9706–9710.

    Article  Google Scholar 

  39. Yang, W.; Gan, L.; Li, H. Q.; Zhai, T. Y. Two-dimensional layered nanomaterials for gas-sensing applications. Inorg. Chem. Front. 2016, 3, 433–451.

    Article  Google Scholar 

  40. Wang, D. H.; Gu, W.; Zhang, Y. W.; Hu, Y.; Zhang, T.; Tao, X. M.; Chen, W. Novel C-rich carbon nitride for room temperature NO2 gas sensors. RSC Adv. 2014, 4, 18003.

    Article  Google Scholar 

  41. Rong, X. S.; Qiu, F. X.; Jiang, Z. T.; Rong, J.; Pan, J. M.; Zhang, T.; Yang, D. Y. Preparation of ternary combined ZnO-Ag2O/porous g-C3N4 composite photocatalyst and enhanced visible-light photocatalytic activity for degradation of ciprofloxacin. Chem. Eng. Res. Des. 2016, 111, 253–261.

    Article  Google Scholar 

  42. Lotsch, B. V.; Schnick, W. New light on an old story: Formation of melam during thermal condensation of melamine. Chem.—Eur. J. 2007, 13, 4956–4968.

    Article  Google Scholar 

  43. Makowski, S. J.; Köstler, P.; Schnick, W. Formation of a hydrogen-bonded heptazine framework by self-assembly of melem into a hexagonal channel structure. Chem.—Eur. J. 2012, 18, 3248–3257.

    Article  Google Scholar 

  44. Chang, Y. Q.; Hong, F.; He, C. X.; Zhang, Q. L.; Liu, J. H. Nitrogen and sulfur dual-doped non-noble catalyst using fluidic acrylonitrile telomer as precursor for efficient oxygen reduction. Adv. Mater. 2013, 25, 4794–4799.

    Article  Google Scholar 

  45. Niu, P.; Yang, Y. Q.; Yu, J. C.; Liu, G.; Cheng, H. M. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem. Commun. 2014, 50, 10837–10840.

    Article  Google Scholar 

  46. Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 2014, 26, 5160–5165.

    Article  Google Scholar 

  47. Zhang, J. S.; Zhang, M. W.; Zhang, G. G.; Wang, X. C. Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal. 2012, 2, 940–948.

    Article  Google Scholar 

  48. She, X. J.; Liu, L.; Ji, H. Y.; Mo, Z.; Li, Y. P.; Huang, L. Y.; Du, D. L.; Xu, H.; Li, H. M. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal. B 2016, 187, 144–153.

    Article  Google Scholar 

  49. Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A., et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

    Article  Google Scholar 

  50. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

    Article  Google Scholar 

  51. Cadarso, V. J.; Llobera, A.; Puyol, M.; Schift, H. Integrated photonic nanofences: Combining subwavelength waveguides with an enhanced evanescent field for sensing applications. ACS Nano 2016, 10, 778–785.

    Article  Google Scholar 

  52. Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822–6829.

    Article  Google Scholar 

  53. Kuzmych, O.; Allen, B. L.; Star, A. Carbon nanotube sensors for exhaled breath components. Nanotechnology 2007, 18, 375502.

    Article  Google Scholar 

  54. Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.

    Article  Google Scholar 

  55. Huang, X.; Qi, X. Y.; Huang, Y. Z.; Li, S. Z.; Xue, C.; Gan, C. L.; Boey, F.; Zhang, H. Photochemically controlled synthesis of anisotropic Au nanostructures: Platelet-like Au nanorods and six-star Au nanoparticles. ACS Nano 2010, 4, 6196–6202.

    Article  Google Scholar 

  56. Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

    Article  Google Scholar 

  57. He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thinfilm transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51322202) and the Natural Science Foundation of Jiangsu Province in China (No. BK20130927).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Huang or Wei Huang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2017_1423_MOESM1_ESM.pdf

Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, Z., Wang, X. et al. Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. Nano Res. 10, 1710–1719 (2017). https://doi.org/10.1007/s12274-017-1423-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1423-8

Keywords

  • graphitic carbon nitride
  • Au nanoparticle
  • gas sensing
  • porous fiber
  • chemiresistive sensor