Zhou, Z. X.; Wang, J. H.; Yu, J. C.; Shen, Y. F.; Li, Y.; Liu, A. R.; Liu, S. Q.; Zhang, Y. J. Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J. Am. Chem. Soc.
2015, 137, 2179–2182.
Article
Google Scholar
Zhang, J. S.; Zhang, M. W.; Lin, L. H.; Wang, X. C. Sol processing of conjugated carbon nitride powders for thinfilm fabrication. Angew. Chem., Int. Ed.
2015, 54, 6297–6301.
Article
Google Scholar
Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater.
2015, 27, 2150–2176.
Article
Google Scholar
Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun.
2014, 5, 3783.
Google Scholar
Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc.
2014, 136, 1730–1733.
Article
Google Scholar
Bai, X. J.; Wang, L.; Zong, R. L.; Zhu, Y. F. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C
2013, 117, 9952–9961.
Article
Google Scholar
Holst, J. R.; Gillan, G. E. From triazines to heptazines: Deciphering the local structure of amorphous nitrogen-rich carbon nitride materials. J. Am. Chem. Soc.
2008, 130, 7373–7379.
Article
Google Scholar
Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater.
2016, 6, 1601273.
Article
Google Scholar
Zada, A.; Humayun, M.; Raziq, F.; Zhang, X. L.; Qu, Y.; Bai, L. L.; Qin, C. L.; Jing, L. Q.; Fu, H. G. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater.
2016, 6, 1601190.
Article
Google Scholar
Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed.
2012, 51, 68–89.
Article
Google Scholar
Zheng, Y.; Lin, L. H.; Ye, X. J.; Guo, F. S.; Wang, X. C. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem., Int. Ed.
2014, 53, 11926–11930.
Article
Google Scholar
Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater.
2009, 8, 76–80.
Google Scholar
Wang, Y.; Yao, J.; Li, H. R.; Su, D. S.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc.
2011, 133, 2362–2365.
Article
Google Scholar
Lau, V. W. H.; Mesch, M. B.; Duppel, V.; Blum, V.; Senker, J.; Lotsch, B. V. Low-molecular-weight carbon nitrides for solar hydrogen evolution. J. Am. Chem. Soc.
2015, 137, 1064–1072.
Article
Google Scholar
Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc.
2013, 135, 7118–7121.
Article
Google Scholar
Zhang, H. Q.; Huang, Y. H.; Hu, S. R.; Huang, Q. T.; Wei, C.; Zhang, W. X.; Kang, L. P.; Huang, Z. Y.; Hao, A. Y. Fluorescent probes for “off–on” sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets. J. Mater. Chem. C
2015, 3, 2093–2100.
Article
Google Scholar
Rong, M. C.; Lin, L. P.; Song, X. H.; Wang, Y. R.; Zhong, Y. X.; Yan, J. W.; Feng, Y. F.; Zeng, X. Y.; Chen, X. Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens. Bioelectron.
2015, 68, 210–217.
Article
Google Scholar
Zelisko, M.; Hanlumyuang, Y.; Yang, S. B.; Liu, Y. M.; Lei, C. H.; Li, J. Y.; Ajayan, P. M.; Sharma, P. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun.
2014, 5, 4284.
Article
Google Scholar
Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater.
2005, 17, 1789–1792.
Article
Google Scholar
Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/ carbon composite electrocatalyst. Angew. Chem., Int. Ed.
2012, 51, 3892–3896.
Article
Google Scholar
Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc.
2011, 133, 20116–20119.
Article
Google Scholar
Zheng, D. D.; Pang, C. Y.; Liu, Y. X.; Wang, X. C. Shellengineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chem. Commun.
2015, 51, 9706–9709.
Article
Google Scholar
Zhao, Z. K.; Dai, Y. T.; Li, J. H.; Wang, G. R. Highly-ordered mesoporous carbon nitride with ultrahigh surface area and pore volume as a superior dehydrogenation catalyst. Chem. Mater.
2014, 26, 3151–3161.
Article
Google Scholar
Hu, M.; Reboul, J.; Furukawa, S.; Radhakrishnan, L.; Zhang, Y. J.; Srinivasu, P.; Iwai, H.; Wang, H. J.; Nemoto, Y.; Suzuki, N. et al. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chem. Commun.
2011, 47, 8124–8126.
Article
Google Scholar
Liang, Q. H.; Ye, L.; Xu, Q.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon
2015, 94, 342–348.
Article
Google Scholar
Zhai, H. S.; Cao, L.; Xia, X. H. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin. Chem. Lett.
2013, 24, 103–106.
Article
Google Scholar
Dong, F.; Ou, M. Y.; Jiang, Y. K.; Guo, S.; Wu, Z. B. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind. Eng. Chem. Res.
2014, 53, 2318–2330.
Article
Google Scholar
Kailasam, K.; Epping, J. D.; Thomas, A.; Losse, S.; Junge, H. Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ. Sci.
2011, 4, 4668–4674.
Article
Google Scholar
Kim, J. S.; Yoo, H. W.; Choi, H. O.; Jung, H. T. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett.
2014, 14, 5941–5947.
Article
Google Scholar
Kim, K.; Lee, H. B. R.; Johnson, R. W.; Tanskanen, J. T.; Liu, N.; Kim, M. G.; Pang, C.; Ahn, C.; Bent, S. F.; Bao, Z. N. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun.
2014, 5, 4781.
Article
Google Scholar
Kulkarni, G. S.; Reddy, K.; Zhong, Z. H.; Fan, X. D. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun.
2014, 5, 4376.
Article
Google Scholar
Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small
2012, 8, 63–67.
Article
Google Scholar
Cho, S. Y.; Yoo, H. W.; Kim, J. Y.; Jung, W. B.; Jin, M. L.; Kim, J. S.; Jeon, H. J.; Jung, H. T. High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Lett.
2016, 16, 4508–4515.
Article
Google Scholar
Liu, J.; Wang, H. Q.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo) catalysis. Chem. Soc. Rev.
2016, 45, 2308–2326.
Article
Google Scholar
Zhang, Y. F.; Bo, X. J.; Nsabimana, A.; Luhana, C.; Wang, G.; Wang, H.; Li, M.; Guo, L. P. Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection. Biosens. Bioelectron.
2014, 53, 250–256.
Article
Google Scholar
Zhang, H. Q.; Huang, Q. T.; Huang, Y. H.; Li, F. M.; Zhang, W. X.; Wei, C.; Chen, J. H.; Dai, P. W.; Huang, L. Z.; Huang, Z. Y. et al. Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta
2014, 142, 125–131.
Article
Google Scholar
Kundu, M. K.; Sadhukhan, M.; Barman, S. Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose. J. Mater. Chem. B
2015, 3, 1289–1300.
Article
Google Scholar
Lee, E. Z.; Jun, Y. S.; Hong, W. H.; Thomas, A.; Jin, M. M. Cubic mesoporous graphitic carbon(IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. Angew. Chem., Int. Ed.
2010, 49, 9706–9710.
Article
Google Scholar
Yang, W.; Gan, L.; Li, H. Q.; Zhai, T. Y. Two-dimensional layered nanomaterials for gas-sensing applications. Inorg. Chem. Front.
2016, 3, 433–451.
Article
Google Scholar
Wang, D. H.; Gu, W.; Zhang, Y. W.; Hu, Y.; Zhang, T.; Tao, X. M.; Chen, W. Novel C-rich carbon nitride for room temperature NO2 gas sensors. RSC Adv.
2014, 4, 18003.
Article
Google Scholar
Rong, X. S.; Qiu, F. X.; Jiang, Z. T.; Rong, J.; Pan, J. M.; Zhang, T.; Yang, D. Y. Preparation of ternary combined ZnO-Ag2O/porous g-C3N4 composite photocatalyst and enhanced visible-light photocatalytic activity for degradation of ciprofloxacin. Chem. Eng. Res. Des.
2016, 111, 253–261.
Article
Google Scholar
Lotsch, B. V.; Schnick, W. New light on an old story: Formation of melam during thermal condensation of melamine. Chem.—Eur. J.
2007, 13, 4956–4968.
Article
Google Scholar
Makowski, S. J.; Köstler, P.; Schnick, W. Formation of a hydrogen-bonded heptazine framework by self-assembly of melem into a hexagonal channel structure. Chem.—Eur. J.
2012, 18, 3248–3257.
Article
Google Scholar
Chang, Y. Q.; Hong, F.; He, C. X.; Zhang, Q. L.; Liu, J. H. Nitrogen and sulfur dual-doped non-noble catalyst using fluidic acrylonitrile telomer as precursor for efficient oxygen reduction. Adv. Mater.
2013, 25, 4794–4799.
Article
Google Scholar
Niu, P.; Yang, Y. Q.; Yu, J. C.; Liu, G.; Cheng, H. M. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem. Commun.
2014, 50, 10837–10840.
Article
Google Scholar
Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater.
2014, 26, 5160–5165.
Article
Google Scholar
Zhang, J. S.; Zhang, M. W.; Zhang, G. G.; Wang, X. C. Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal.
2012, 2, 940–948.
Article
Google Scholar
She, X. J.; Liu, L.; Ji, H. Y.; Mo, Z.; Li, Y. P.; Huang, L. Y.; Du, D. L.; Xu, H.; Li, H. M. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal. B
2016, 187, 144–153.
Article
Google Scholar
Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A., et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon
2009, 47, 145–152.
Article
Google Scholar
Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed.
2011, 50, 11093–11097.
Article
Google Scholar
Cadarso, V. J.; Llobera, A.; Puyol, M.; Schift, H. Integrated photonic nanofences: Combining subwavelength waveguides with an enhanced evanescent field for sensing applications. ACS Nano
2016, 10, 778–785.
Article
Google Scholar
Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater.
2016, 26, 6822–6829.
Article
Google Scholar
Kuzmych, O.; Allen, B. L.; Star, A. Carbon nanotube sensors for exhaled breath components. Nanotechnology
2007, 18, 375502.
Article
Google Scholar
Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small
2013, 9, 1974–1981.
Article
Google Scholar
Huang, X.; Qi, X. Y.; Huang, Y. Z.; Li, S. Z.; Xue, C.; Gan, C. L.; Boey, F.; Zhang, H. Photochemically controlled synthesis of anisotropic Au nanostructures: Platelet-like Au nanorods and six-star Au nanoparticles. ACS Nano
2010, 4, 6196–6202.
Article
Google Scholar
Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun.
2013, 4, 1444.
Article
Google Scholar
He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thinfilm transistor arrays for practical gas-sensing applications. Small
2012, 8, 2994–2999.
Article
Google Scholar