Nano Research

, Volume 10, Issue 5, pp 1498–1509 | Cite as

Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures

  • Wei Zheng
  • Biao Xu
  • Lin Zhou
  • Yilong Zhou
  • Haimei Zheng
  • Chenghan Sun
  • Enzheng Shi
  • Tanner Dale Fink
  • Yue WuEmail author
Review Article


Thermoelectric materials, which can convert waste heat into electricity, have received increasing research interest in recent years. This paper describes the recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. We start our discussion with the strategies of improving the power factor of a given material by using nanoheterostructures. Then we discuss the methods of decreasing thermal conductivity. Finally, we highlight a way of decoupling power factor and thermal conductivity, namely, incorporating phase-transition materials into a nanowire heterostructure. We have explored the lead telluride–copper telluride thermoelectric nanowire heterostructure in this work. Future possible ways to improve the figure of merit are discussed at the end of this paper.


thermoelectrics nanoheterostructures phase change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Y. W. gratefully thank the support from Office of Naval Research, Award Number N00014-16-1-2066.


  1. [1]
    Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.CrossRefGoogle Scholar
  2. [2]
    Wang, H.; Pei, Y. Z.; LaLonde, A. D.; Snyder, G. J. Heavily doped p-type PbSe with high thermoelectric performance: An alternative for PbTe. Adv. Mater. 2011, 23, 1366–1370.CrossRefGoogle Scholar
  3. [3]
    Pei, Y. Z.; Shi, X. Y.; LaLonde, A.; Wang, H.; Chen, L. D.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectric. Nature 2011, 473, 66–69.CrossRefGoogle Scholar
  4. [4]
    Heremans, J. P.; Jovoviv, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557.CrossRefGoogle Scholar
  5. [5]
    Yang, H. R.; Bahk, J. H.; Day, T.; Mohammed, A. M. S.; Snyder, G. J.; Shakouri, A.; Wu, Y. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. Nano Lett. 2015, 15, 1349–1355.CrossRefGoogle Scholar
  6. [6]
    Wu, D.; Pei, Y. L.; Wang, Z.; Wu, H. J.; Huang, L.; Zhao, L. D.; He, J. Q. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites. Adv. Func. Mater. 2014, 24, 7763–7771.CrossRefGoogle Scholar
  7. [7]
    Liu, H. L.; Shi, X.; Xu, F. F.; Zhang, L. L.; Zhang, W. Q.; Chen, L. D.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J. Copper ion liquid-like thermoelectric. Nat. Mater. 2012, 11, 422–425.CrossRefGoogle Scholar
  8. [8]
    Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144.CrossRefGoogle Scholar
  9. [9]
    Li, J.; Sui, J. H.; Pei, Y. L.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; He, J. Q.; Zhao, L. D. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 2012, 5, 8543–8547.CrossRefGoogle Scholar
  10. [10]
    Lin, H.; Tan, G. J. Shen, J. N.; Hao, S. Q.; Wu, L. M.; Calta, N.; Malliakas, C.; Wang, S.; Uher, C.; Wolverton, C. et al. Concerted rattling CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance. Angew. Chem., Int. Ed. 2016, 55, 11431–11436.CrossRefGoogle Scholar
  11. [11]
    Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.CrossRefGoogle Scholar
  12. [12]
    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, Pawan. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.CrossRefGoogle Scholar
  13. [13]
    Liang, Y. T.; Lu, C. G.; Ding, D. F.; Zhao, M.; Wang, D. W.; Hu, C.; Qiu, J. S.; Xie, G.; Tang, Z. Y. Capping nanoparticles with grapheme quantum dots for enhanced thermoelectric performance. Chem. Sci. 2015, 6, 4103–4108.CrossRefGoogle Scholar
  14. [14]
    Ibáñez, M.; Zamani, R.; Lalonde, A.; Cadavid, D.; Li, W. H.; Shavel, A.; Arbiol, J.; Morante, J. R.; Gorsse, S.; Snyder, G. J. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J. Am. Chem. Soc. 2012, 134, 4060–4063.CrossRefGoogle Scholar
  15. [15]
    Scheele, M.; Oeschler, N.; Veremchuk, I.; Reinsberg, K. G.; Kreuziger, A. M.; Kornowski, A.; Broekaert, J.; Klinke, C.; Weller, H. ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplatelets. ACS Nano 2010, 4, 4283–4291.CrossRefGoogle Scholar
  16. [16]
    Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.CrossRefGoogle Scholar
  17. [17]
    Dalpian, G. M.; Chelikowsky, J. R. Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 2006, 96, 226802.CrossRefGoogle Scholar
  18. [18]
    Carbone, L.; Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493.CrossRefGoogle Scholar
  19. [19]
    Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4879.CrossRefGoogle Scholar
  20. [20]
    Banin, U.; Yuval, B. S.; Vinokurov, K. Hybrid semiconductor–metal nanoparticles: From architecture to function. Chem. Mater. 2014, 26, 97–110.CrossRefGoogle Scholar
  21. [21]
    Ma, Y.; Heijl, R.; Palmqvist, A. E. Composite thermoelectric materials with embedded nanoparticles. J. Mater. Sci. 2013, 48, 2767–2778.CrossRefGoogle Scholar
  22. [22]
    Zhou, W. W.; Zhu, J. X.; Li, D.; Hng, H. H.; Boey, F. Y. C.; Ma, J.; Zhang, H.; Yan, Q. Y. Binary-phased nanoparticles for enhanced thermoelectric properties. Adv. Mater. 2009, 21, 3196–3200.CrossRefGoogle Scholar
  23. [23]
    Heremans, J. P.; Thrush, C. M.; Morelli, D. T. Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B. 2004, 70, 115334.CrossRefGoogle Scholar
  24. [24]
    Wang, Y.; Chen, X.; Cui, T.; Niu, Y. L.; Wang, Y. C.; Wang, M.; Ma, Y. M.; Zou, G. T. Enhanced thermoelectric performance of PbTe within the orthorhombic Pnma phase. Phys. Rev. B. 2007, 76, 155127.CrossRefGoogle Scholar
  25. [25]
    Pei, Y. Z.; Heinz, N. A.; Snyder, G. J. Allowing to increase the band gap for improving thermoelectric properties of Ag2Te. J. Mater. Chem. 2011, 21, 18256–18260.CrossRefGoogle Scholar
  26. [26]
    Li, S. K.; Xin, C.; Liu, X. R.; Feng, Y. C.; Liu, Y. D.; Zheng, J. X.; Liu, F. S.; Huang, Q. Z.; Qiu, Y. M.; He, J. Q. et al. 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy 2016, 30, 780–789.CrossRefGoogle Scholar
  27. [27]
    Callaway, J.; Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 1960, 120, 1149–1154.CrossRefGoogle Scholar
  28. [28]
    Feng, T. L.; Ruan, X. L. Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectric and thermal management: A review. J. Nanomater. 2014, 2014, Article ID206370.Google Scholar
  29. [29]
    Ibáñez, M.; Zamani, R.; Gorsse, S.; Fan, J. D.; Ortega, S.; Cadavid, D.; Morante, J. R.; Arbiol, J.; Cabot, A. Core-shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe-PbS thermoelectric properties. ACS Nano 2013, 7, 2573–2586.CrossRefGoogle Scholar
  30. [30]
    Mingo, N.; Hauser, D.; Kobayashi, N. P.; Plissonnier, M.; Shakouri, A. “Nanoparticle-in-alloy” approach to efficient thermoelectric: Silicides in SiGe. Nano Lett. 2009, 9, 711–715.CrossRefGoogle Scholar
  31. [31]
    Fang, H. Y.; Feng, T. L.; Yang, H. R.; Ruan, X. L.; Wu, Y. Synthesis and thermoelectric properties of compositionalmodulated lead telluride–bismuth telluride nanowire heterostructures. Nano Lett. 2013, 13, 2058–2063.CrossRefGoogle Scholar
  32. [32]
    Son, J. S.; Choi, M. K.; Han, M. K.; Park, K.; Kim, J. Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. J. et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640–647.CrossRefGoogle Scholar
  33. [33]
    Yu, B.; Liu, W. S.; Chen, S.; Wang, H.; Wang, H. Z.; Chen, G.; Ren, Z. F. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy 2012, 1, 472–478.CrossRefGoogle Scholar
  34. [34]
    Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 114, 8706–8715.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wei Zheng
    • 1
  • Biao Xu
    • 1
  • Lin Zhou
    • 2
  • Yilong Zhou
    • 3
  • Haimei Zheng
    • 3
  • Chenghan Sun
    • 1
  • Enzheng Shi
    • 1
  • Tanner Dale Fink
    • 1
  • Yue Wu
    • 1
    Email author
  1. 1.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA
  2. 2.Ames Laboratory, Department of EnergyIowa State UniversityAmesUSA
  3. 3.Material Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations