Toward integrated detection and graphene-based removal of contaminants in a lab-on-a-chip platform


A novel, miniaturized microfluidic platform was developed for the simultaneous detection and removal of polybrominated diphenyl ethers (PBDEs). The platform consists of a polydimethylsiloxane (PDMS) microfluidic chip for an immunoreaction step, a PDMS chip with an integrated screen-printed electrode (SPCE) for detection, and a PDMS-reduced graphene oxide (rGO) chip for physical adsorption and subsequent removal of PBDE residues. The detection was based on competitive immunoassay-linked binding between PBDE and PBDE modified with horseradish peroxidase (HRP-PBDE) followed by the monitoring of enzymatic oxidation of o-aminophenol (o-AP) using square wave anodic stripping voltammetry (SW-ASV). PBDE was detected with good sensitivity and a limit of detection similar to that obtained with a commercial colorimetric test (0.018 ppb), but with the advantage of using lower reagent volumes and a reduced analysis time. The use of microfluidic chips also provides improved linearity and a better reproducibility in comparison to those obtained with batch-based measurements using screen-printed electrodes. In order to design a detection system suitable for toxic compounds such as PBDEs, a reduced graphene oxide–PDMS composite was developed and optimized to obtain increased adsorption (based on both the hydrophobicity and π–π stacking between rGO and PBDE molecules) compared to those of non-modified PDMS. To the best of our knowledge, this is the first demonstration of electrochemical detection of flame retardants and a novel application of the rGO-PDMS composite in a biosensing system. This system can be easily applied to detect any analyte using the appropriate immunoassay and it supports operation in complex matrices such as seawater.

This is a preview of subscription content, log in to check access.


  1. [1]

    Medina-Sánchez, M.; Miserere, S.; Morales-Narváez, E.; Merkoçi, A. On-chip magneto-immunoassay for Alzheimer’s biomarker electrochemical detection by using quantum dots as labels. Biosens. Bioelectron. 2014, 54, 279–284.

    Article  Google Scholar 

  2. [2]

    Marasso, S. L.; Giuri, E.; Canavese, G.; Castagna, R.; Quaglio, M.; Ferrante, I.; Perrone, D.; Cocuzza, M. A multilevel lab on chip platform for DNA analysis. Biomed. Microdevices 2011, 13, 19–27.

    Article  Google Scholar 

  3. [3]

    Lee, H. H.; Yager, P. Microfluidic lab-on-a-chip for microbial identification on a DNA microarray. Biotechnol. Bioprocess Eng. 2007, 12, 634–639.

    Article  Google Scholar 

  4. [4]

    Kurbanoglu, S.; Mayorga-Martinez, C. C.; Medina-Sánchez, M.; Rivas, L.; Ozkan, S. A.; Merkoçi, A. Antithyroid drug detection using an enzyme cascade blocking in a nanoparticle-based lab-on-a-chip system. Biosens. Bioelectron. 2015, 67, 670–676.

    Article  Google Scholar 

  5. [5]

    Kimura, H.; Ikeda, T.; Nakayama, H.; Sakai, Y.; Fujii, T. An on-chip small intestine-liver model for pharmacokinetic studies. J. Lab. Autom. 2015, 20, 265–273.

    Article  Google Scholar 

  6. [6]

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M. Detection of bovine growth hormone using conventional and lab-ona-chip technologies: A review. Int. J. Adv. Eng. Sci. Appl. Math. 2015, 7, 177–190.

    Article  Google Scholar 

  7. [7]

    Ozhikandathil, J.; Packirisamy, M. Nano-islands integrated evanescence-based lab-on-a-chip on silica-on-silicon and polydimethylsiloxane hybrid platform for detection of recombinant growth hormone. Biomicrofluidics 2012, 6, 46501.

    Article  Google Scholar 

  8. [8]

    Medina-Sánchez, M.; Cadevall, M.; Ros, J.; Merkoçi, A. Eco-friendly electrochemical lab-on-paper for heavy metal detection. Anal. Bioanal. Chem. 2015, 407, 8445–8449.

    Article  Google Scholar 

  9. [9]

    da Costa, E. T.; Santos, M. F. S.; Jiao, H.; do Lago, C. L.; Gutz, I. G. R.; Garcia, C. D. Fast production of microfluidic devices by CO2 laser engraving of wax-coated glass slides. Electrophoresis 2016, 37, 1691–1695.

    Article  Google Scholar 

  10. [10]

    Ambrosi, A.; Guix, M.; Merkoçi, A. Magnetic and electrokinetic manipulations on a microchip device for bead-based immunosensing applications. Electrophoresis 2011, 32, 861–869.

    Article  Google Scholar 

  11. [11]

    Medina-Sánchez, M.; Miserere, S.; Merkoçi, A. Nanomaterials and lab-on-a-chip technologies. Lab Chip 2012, 12, 1932–1943.

    Article  Google Scholar 

  12. [12]

    Li, S. G.; Xu, Z. G.; Mazzeo, A.; Burns, D. J.; Fu, G.; Dirckx, M.; Shilpiekandula, V.; Chen, X.; Nayak, N. C.; Wong, E. et al. Review of production of microfluidic devices: Material, manufacturing and metrology. In Proceedings of the SPIE 6993, MEMS, MOEMS and Micromachining III, Strasbourg, France, 2008.

    Google Scholar 

  13. [13]

    Bhise, N. S.; Manoharan, V.; Massa, S.; Tamayol, A.; Ghaderi, M.; Miscuglio, M.; Lang, Q.; Zhang, Y. S.; Shin, S. R.; Calzone, G. et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 2016, 8, 014101.

    Article  Google Scholar 

  14. [14]

    He, J. K.; Chen, R. M.; Lu, Y. J.; Zhan, L.; Liu, Y. X.; Li, D. C.; Jin, Z. M. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 59, 53–60.

    Article  Google Scholar 

  15. [15]

    Xia, Y. N.; Whitesides, G. M. Soft lithography. Ann. Rev. Mater. Sci. 1998, 28, 153–184.

    Article  Google Scholar 

  16. [16]

    Mayorga-Martinez, C. C.; Hlavata, L.; Miserere, S.; López-Marzo, A.; Labuda, J.; Pons, J.; Merkoçi, A. An integrated phenol “sensoremoval” microfluidic nanostructured platform. Biosens. Bioelectron. 2014, 55, 355–359.

    Article  Google Scholar 

  17. [17]

    Mayorga-Martinez, C. C.; Hlavata, L.; Miserere, S.; López-Marzo, A.; Labuda, J.; Pons, J.; Merkoçi, A. Nanostructured CaCO3-poly(ethyleneimine) microparticles for phenol sensing in fluidic microsystem. Electrophoresis 2013, 34, 2011–2016.

    Article  Google Scholar 

  18. [18]

    Medina-Sánchez, M.; Mayorga-Martinez, C.; Watanabe, T.; Ivandini, T.; Honda, Y.; Pino, F.; Nakata, K.; Fujishima, A.; Einaga, Y.; Merkoçi, A. Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosens. Bioelectron. 2016, 75, 365–374.

    Article  Google Scholar 

  19. [19]

    Tan, H. Y.; Loke, W. K.; Nguyen, N. T.; Tan, S. N.; Tay, N. B.; Wang, W.; Ng, S. H. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin. Biomed. Microdevices 2014, 16, 269–275.

    Article  Google Scholar 

  20. [20]

    Ibarlucea, B.; Díez-Gil, C.; Ratera, I.; Veciana, J.; Caballero, A.; Zapata, F.; Tárraga, A.; Molina, P.; Demming, S.; Büttgenbach, S. et al. PDMS based photonic lab-on-a-chip for the selective optical detection of heavy metal ions. Analyst 2013, 138, 839–844.

    Article  Google Scholar 

  21. [21]

    Feng, C. Y.; Wei, J. F.; Li, Y. J.; Yang, Y. S.; Wang, Y. H.; Lu, L.; Zheng, G. X. An on-chip pollutant toxicity determination based on marine microalgal swimming inhibition. Analyst 2016, 141, 1761–1771.

    Article  Google Scholar 

  22. [22]

    Zheng, G. X.; Li, Y. J.; Qi, L. L.; Liu, X. M.; Wang, H.; Yu, S. P.; Wang, Y. H. Marine phytoplankton motility sensor integrated into a microfluidic chip for high-throughput pollutant toxicity assessment. Mar. Pollut. Bull. 2014, 84, 147–154.

    Article  Google Scholar 

  23. [23]

    Zheng, G. X.; Wang, Y. H.; Wang, Z. M.; Zhong, W. L.; Wang, H.; Li, Y. J. An integrated microfluidic device in marine microalgae culture for toxicity screening application. Mar. Pollut. Bull. 2013, 72, 231–243.

    Article  Google Scholar 

  24. [24]

    Hooper, K.; McDonald, T. A. The PBDEs: An emerging environmental challenge and another reason for breast-milk monitoring programs. Environ. Health Perspect. 2000, 108, 387–392.

    Article  Google Scholar 

  25. [25]

    Andrade, N. A.; McConnell, L. L.; Torrents, A.; Ramirez, M. Persistence of polybrominated diphenyl ethers in agricultural soils after biosolids applications. J. Agric. Food Chem. 2010, 58, 3077–3084.

    Article  Google Scholar 

  26. [26]

    Guo, W. H.; Holden, A.; Smith, S. C.; Gephart, R.; Petreas, M.; Park, J. S. PBDE levels in breast milk are decreasing in California. Chemosphere 2016, 150, 505–513.

    Article  Google Scholar 

  27. [27]

    Ward, J.; Mohapatra, S. P.; Mitchell, A. An overview of policies for managing polybrominated diphenyl ethers (PBDEs) in the Great Lakes Basin. Environ. Int. 2008, 34, 1148–1156.

    Article  Google Scholar 

  28. [28]

    Darnerud, P. O.; Eriksen, G. S.; Jóhannesson, T.; Larsen, P. B.; Viluksela, M. Polybrominated diphenyl ethers: Occurrence, dietary exposure, and toxicology. Environ. Health Perspect. 2001, 109, 49–68.

    Article  Google Scholar 

  29. [29]

    Porterfield, S. P. Vulnerability of the developing brain to thyroid abnormalities: Environmental insults to the thyroid system. Environ. Health Perspect. 1994, 102, 125–130.

    Article  Google Scholar 

  30. [30]

    Ahn, K. C.; Gee, S. J.; Tsai, H. J.; Bennett, D.; Nishioka, M. G.; Blum, A.; Fishman, E.; Hammock, B. D. Immunoassay for monitoring environmental and human exposure to the polybrominated diphenyl ether BDE-47. Environ. Sci. Technol. 2009, 43, 7784–7790.

    Article  Google Scholar 

  31. [31]

    Butryn, D. M.; Gross, M. S.; Chi, L. H.; Schecter, A.; Olson, J. R.; Aga, D. S. "One-shot" analysis of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogs in human breast milk and serum using gas chromatography-tandem mass spectrometry. Anal. Chim. Acta 2015, 892, 140–147.

    Article  Google Scholar 

  32. [32]

    Li, Z.; Li, C.; Lin, D.; Kang, W. J.; Pan, D. Y.; Wu, M. H. GC/MS analysis of polybrominated diphenyl ethers in vegetables collected from Shanghai, China. In Proceedings of the 2013 International Conference on Material Science and Environmental Engineering (MSEE 2013), 2013, pp 292–296.

    Google Scholar 

  33. [33]

    Liu, Q.; Shi, J. B.; Sun, J. T.; Wang, T.; Zeng, L. X.; Zhu, N. L.; Jiang, G. B. Graphene-assisted matrix solid-phase dispersion for extraction of polybrominated diphenyl ethers and their methoxylated and hydroxylated analogs from environmental samples. Anal. Chim. Acta 2011, 708, 61–68.

    Article  Google Scholar 

  34. [34]

    Zhang, H.; Lee, H. K. Plunger-in-needle solid-phase microextraction with graphene-based sol–gel coating as sorbent for determination of polybrominated diphenyl ethers. J. Chromatogr. A 2011, 1218, 4509–4516.

    Article  Google Scholar 

  35. [35]

    Orozco, J.; Mercante, L. A.; Pol, R.; Merkoçi, A. Graphenebased Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 2016, 4, 3371–3378.

    Article  Google Scholar 

  36. [36]

    Chen, M. T.; Tao, T.; Zhang, L.; Gao, W.; Li, C. Z. Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chem. Commun. 2013, 49, 1612–1614.

    Article  Google Scholar 

  37. [37]

    Shahzad, M. I.; Giorcelli, M.; Shahzad, N.; Guastella, S.; Castellino, M.; Jagdale, P.; Tagliaferro, A. Study of carbon nanotubes based polydimethylsiloxane composite films. In Proceedings of the 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6), Islamabad, Pakistan, 2013.

    Google Scholar 

  38. [38]

    Lee, A. C.; Liu, G. D.; Heng, C. K.; Tan, S. N.; Lim, T. M.; Lin, Y. H. Sensitive electrochemical detection of horseradish peroxidase at disposable screen-printed carbon electrode. Electroanalysis 2008, 20, 2040–2046.

    Article  Google Scholar 

  39. [39]

    Medina-Sánchez, M.; Miserere, S.; Marín, S.; Aragay, G.; Merkoçi, A. On-chip electrochemical detection of CdS quantum dots using normal and multiple recycling flow through modes. Lab Chip 2012, 12, 2000–2005.

    Article  Google Scholar 

  40. [40]

    Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

    Article  Google Scholar 

  41. [41]

    Nourani, S.; Ghourchian, H.; Boutorabi, S. M. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen. Anal. Biochem. 2013, 441, 1–7.

    Article  Google Scholar 

  42. [42]

    Xu, R. Q.; Lu, Y. Q.; Jiang, C. H.; Chen, J.; Mao, P.; Gao, G. H.; Zhang, L. B.; Wu, S. Facile fabrication of threedimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor. ACS Appl. Mater. Interfaces 2014, 6, 13455–13460.

    Article  Google Scholar 

  43. [43]

    Ju, T.; Ge, W.; Jiang, T.; Chai, C. Polybrominated diphenyl ethers in dissolved and suspended phases of seawater and in surface sediment from Jiaozhou Bay, North China. Sci. Total Environ. 2016, 557–558, 571–578.

    Article  Google Scholar 

  44. [44]

    Lammel, G.; Audy, O.; Besis, A.; Efstathiou, C.; Eleftheriadis, K.; Kohoutek, J.; Kukucka, P.; Mulder, M. D.; Pribylová, P.; Prokeš, R. et al. Air and seawater pollution and air-sea gas exchange of persistent toxic substances in the Aegean Sea: Spatial trends of PAHs, PCBs, OCPs and PBDEs. Environ. Sci. Pollut. Res. 2015, 22, 11301–11313.

    Article  Google Scholar 

  45. [45]

    Cristale, J.; Hurtado, A.; Gómez-Canela, C.; Lacorte, S. Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain. Environ. Res. 2016, 149, 66–76.

    Article  Google Scholar 

  46. [46]

    Xu, D.; Zhu, W.; Wang, C.; Tian, T.; Li, J.; Lan, Y.; Zhang, G. X.; Zhang, D. Q.; Li, G. T. Label-free detection and discrimination of poly-brominated diphenylethers using molecularly imprinted photonic cross-reactive sensor arrays. Chem. Commun. 2014, 50, 14133–14136.

    Article  Google Scholar 

  47. [47]

    Radhakrishnan, R.; Suni, I. I.; Bever, C. S.; Hammock, B. D. Impedance biosensors: Applications to sustainability and remaining technical challenges. ACS Sustainable Chem. Eng. 2014, 2, 1649–1655.

    Article  Google Scholar 

Download references


We acknowledge FP7 EU Project “SMS” (No. 613844). ICN2 acknowledges support from the Severo Ochoa Program (MINECO, No. SEV-2013-0295) and Secretaria d’Universitats i Recerca del Departament d′Economia i Coneixement de la Generalitat de Catalunya (2014 SGR 260). The authors would also like to thank Dr. Mariana Medina Sánchez for microfluidic mold fabrication that was employed in GO-CHIP development.

Author information



Corresponding author

Correspondence to Arben Merkoçi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chałupniak, A., Merkoçi, A. Toward integrated detection and graphene-based removal of contaminants in a lab-on-a-chip platform. Nano Res. 10, 2296–2310 (2017).

Download citation


  • electrochemistry
  • microfluidics
  • graphene oxide
  • flame retardants
  • lab on a chip
  • polydimethylsiloxane