Nano Research

, Volume 10, Issue 4, pp 1107–1114 | Cite as

Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires

  • Minliang Lai
  • Qiao Kong
  • Connor G. Bischak
  • Yi Yu
  • Letian Dou
  • Samuel W. Eaton
  • Naomi S. Ginsberg
  • Peidong Yang
Research Article

Abstract

Cesium lead iodide (CsPbI3), in its black perovskite phase, has a suitable bandgap and high quantum efficiency for photovoltaic applications. However, CsPbI3 tends to crystalize into a yellow non-perovskite phase, which has poor optoelectronic properties, at room temperature. Therefore, controlling the phase transition in CsPbI3 is critical for practical application of this material. Here we report a systematic study of the phase transition of one-dimensional CsPbI3 nanowires and their corresponding structural, optical, and electrical properties. We show the formation of perovskite black phase CsPbI3 nanowires from the non-perovskite yellow phase through rapid thermal quenching. Post-transformed black phase CsPbI3 nanowires exhibit increased photoluminescence emission intensity with a shrinking of the bandgap from 2.78 to 1.76 eV. The perovskite nanowires were photoconductive and showed a fast photoresponse and excellent stability at room temperature. These promising optical and electrical properties make the perovskite CsPbI3 nanowires attractive for a variety of nanoscale optoelectronic devices.

Keywords

inorganic halide perovskite CsPbI3 phase transition stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1415_MOESM1_ESM.pdf (2.4 mb)
Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires

References

  1. [1]
    Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.CrossRefGoogle Scholar
  2. [2]
    Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.CrossRefGoogle Scholar
  3. [3]
    Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W.-H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.CrossRefGoogle Scholar
  4. [4]
    Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.CrossRefGoogle Scholar
  5. [5]
    Niu, G. D.; Guo, X. D.; Wang, L. D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980.CrossRefGoogle Scholar
  6. [6]
    Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500963.CrossRefGoogle Scholar
  7. [7]
    Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477.CrossRefGoogle Scholar
  8. [8]
    Philippe, B.; Park, B. W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M. J.; Rensmo, H. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures? A photoelectron spectroscopy investigation. Chem. Mater. 2015, 27, 1720–1731.CrossRefGoogle Scholar
  9. [9]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.CrossRefGoogle Scholar
  10. [10]
    Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.CrossRefGoogle Scholar
  11. [11]
    Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L.-W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.CrossRefGoogle Scholar
  12. [12]
    Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.CrossRefGoogle Scholar
  13. [13]
    Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7, 746–751.CrossRefGoogle Scholar
  14. [14]
    Møller, C. K. Crystal structure and photoconductivity of cæsium plumbohalides. Nature 1958, 182, 1436.CrossRefGoogle Scholar
  15. [15]
    Natarajan, M.; Prakash, B. Phase transitions in ABX3 type halides. Phys. Status Solidi A Appl. Res. 1971, 4, K167–K172.CrossRefGoogle Scholar
  16. [16]
    Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695.CrossRefGoogle Scholar
  17. [17]
    Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.CrossRefGoogle Scholar
  18. [18]
    Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot–induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.CrossRefGoogle Scholar
  19. [19]
    Dastidar, S.; Egger, D. A.; Tan, L. Z.; Cromer, S. B.; Dillon, A. D.; Liu, S.; Kronik, L.; Rappe, A. M.; Fafarman, A. T. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 2016, 16, 3563–3570.CrossRefGoogle Scholar
  20. [20]
    Krumhansl, J. A.; Schrieffer, J. R. Dynamics and statistical mechanics of a one-dimensional model hamiltonian for structural phase transitions. Phys. Rev. B 1975, 11, 3535–3545.CrossRefGoogle Scholar
  21. [21]
    Gu, Q.; Falk, A.; Wu, J. Q.; Ouyang, L.; Park, H. Currentdriven phase oscillation and domain-wall propagation in WxV1-x O2 nanobeams. Nano Lett. 2007, 7, 363–366.CrossRefGoogle Scholar
  22. [22]
    Liu, W.; Pan, W.; Luo, J.; Godfrey, A.; Ou, G.; Wu, H.; Zhang, W. Suppressed phase transition and giant ionic conductivity in La2Mo2O9 nanowires. Nat. Commun. 2015, 6, 8354.CrossRefGoogle Scholar
  23. [23]
    Campbell, M. G.; Powers, D. C.; Raynaud, J.; Graham, M. J.; Xie, P.; Lee, E.; Ritter, T. Synthesis and structure of solution-stable one-dimensional palladium wires. Nat. Chem. 2011, 3, 949–953.CrossRefGoogle Scholar
  24. [24]
    Trots, D. M.; Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 2008, 69, 2520–2526.CrossRefGoogle Scholar
  25. [25]
    Stoumpos, C. C.; Kanatzidis, M. G. The Renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 2015, 48, 2791–2802.CrossRefGoogle Scholar
  26. [26]
    Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963–7972.CrossRefGoogle Scholar
  27. [27]
    Wang, Y. L.; Guan, X.; Li, D. H.; Cheng, H.-C.; Duan, X. D.; Lin, Z. Y.; Duan, X. F. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res., in press, DOI: 10.1007/s12274-016-1317-1.Google Scholar
  28. [28]
    Trigui, A.; Abid, H.; Mlayah, A.; Abid, Y. Optical properties and vibrational studies of a new self assembled organic–inorganic nanowire crystal (C6H13N3)2Pb3I10. Synth. Met. 2012, 162, 1731–1736.CrossRefGoogle Scholar
  29. [29]
    Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 2015, 137, 2089–2096.CrossRefGoogle Scholar
  30. [30]
    Bischak, C. G.; Sanehira, E. M.; Precht, J. T.; Luther, J. M.; Ginsberg, N. S. Heterogeneous charge carrier dynamics in organic-inorganic hybrid materials: Nanoscale lateral and depth-dependent variation of recombination rates in methylammonium lead halide perovskite thin films. Nano Lett. 2015, 15, 4799–4807.CrossRefGoogle Scholar
  31. [31]
    Li, D. H.; Wang, G. M.; Cheng, H. C.; Chen, C. Y.; Wu, H.; Liu, Y.; Duan, X. F. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 2016, 7, 11330.CrossRefGoogle Scholar
  32. [32]
    Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hö rantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.CrossRefGoogle Scholar
  33. [33]
    Grote, C.; Berger, R. F. Strain tuning of tin-halide and lead- halide perovskites: A first-principles atomic and electronic structure study. J. Phys. Chem. C 2015, 119, 22832–22837.CrossRefGoogle Scholar
  34. [34]
    Zhang, H. Z.; Banfield, J. F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 1998, 8, 2073–2076.CrossRefGoogle Scholar
  35. [35]
    Hegedüs, J.; Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials. Nat. Mater. 2008, 7, 399–405.CrossRefGoogle Scholar
  36. [36]
    Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C. D.; Bhaskaran, H.; Pernice, W. H. P. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732.CrossRefGoogle Scholar
  37. [37]
    Li, P. N.; Yang, X. S.; Maß, T. W. W.; Hanss, J. L.; Lewin, M.; Michel, A.-K. U.; Wuttig, M.; Taubner, T. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 2016, 15, 870–875.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Minliang Lai
    • 1
  • Qiao Kong
    • 1
  • Connor G. Bischak
    • 1
  • Yi Yu
    • 1
    • 2
  • Letian Dou
    • 1
    • 2
  • Samuel W. Eaton
    • 1
  • Naomi S. Ginsberg
    • 1
    • 2
    • 3
    • 4
    • 5
  • Peidong Yang
    • 1
    • 2
    • 3
    • 6
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Kavli Energy Nanosciences InstituteBerkeleyUSA
  4. 4.Molecular Biophysics and Integrative Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  6. 6.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations