Nano Research

, Volume 10, Issue 7, pp 2234–2243 | Cite as

“Takeaway” drug delivery: A new nanomedical paradigm

  • Elena González-Domínguez
  • Benito Rodríguez-González
  • Moisés Pérez-Lorenzo
  • Miguel A. Correa-Duarte
Research Article


An alternative model to the well-established paradigm of the externally switchable drug delivery systems is herein proposed. In contrast to the on–off archetype, here the amount of released drug is pre-set by the application of an external stimulus, and is gradually released after the withdrawal of the exogenous signal. These attributes are achieved through an innovative approach featuring the integration of plasmonic nanovehicles in a polymer-based film. Such a platform is provided with optically responsive capabilities together with multiple diffusional barriers, allowing for an “on-demand” time-limited release where light acts as a therapeutic “starting shot”. These nanoarchitectured depots have great potential as implantable drug delivery systems in clinical scenarios where a recurrent, sustained, and yet, on–off administration of medication is required. The application of these hybrid materials may extend the implementation of nanomedicine strategies beyond the point-of-care setting.


release plasmonic nanocapsule hydrogel NIR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was funded by Xunta de Galicia (No. EM2014/035), MINECO-Spain (No. CTM2014-58481-R), and Fundación Tatiana Pérez de Guzmán el Bueno.


  1. [1]
    Gupta, M.; Agrawal, G. P.; Vyas, S. P. Polymeric nanomedicines as a promising vehicle for solid tumor therapy and targeting. Curr. Mol. Med. 2013, 13, 179–204.CrossRefGoogle Scholar
  2. [2]
    Maeda, H.; Bharate, G. Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009, 71, 409–419.CrossRefGoogle Scholar
  3. [3]
    Basile, L.; Pignatello, R.; Passirani, C. Active targeting strategies for anticancer drug nanocarriers. Curr. Drug Deliv. 2012, 9, 255–268.CrossRefGoogle Scholar
  4. [4]
    De Souza, R.; Zahedi, P.; Allen, C. J.; Piquette-Miller, M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv. 2010, 17, 365–375.CrossRefGoogle Scholar
  5. [5]
    Exner, A. A.; Saidel, G. M. Drug-eluting polymer implants in cancer therapy. Expert Opin. Drug Deliv. 2008, 5, 775–788.CrossRefGoogle Scholar
  6. [6]
    Wolinsky, J. B.; Colson, Y. L.; Grinstaff, M. W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release 2012, 159, 14–26.CrossRefGoogle Scholar
  7. [7]
    Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12.CrossRefGoogle Scholar
  8. [8]
    Calvert, P. Hydrogels for soft machines. Adv. Mater. 2009, 21, 743–756.CrossRefGoogle Scholar
  9. [9]
    Williams, H. D.; Trevaskis, N. L.; Charman, S. A.; Shanker, R. M.; Charman, W. N.; Pouton, C. W.; Porter, C. J. H. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013, 65, 315–499.CrossRefGoogle Scholar
  10. [10]
    Huang, X.; Brazel, C. S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136.CrossRefGoogle Scholar
  11. [11]
    Hoare, T. R.; Kohane, D. S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007.CrossRefGoogle Scholar
  12. [12]
    De Robertis, S.; Bonferoni, M. C.; Elviri, L.; Sandri, G.; Caramella, C.; Bettini, R. Advances in oral controlled drug delivery: The role of drug–polymer and interpolymer noncovalent interactions. Expert Opin. Drug Deliv. 2015, 12, 441–453.CrossRefGoogle Scholar
  13. [13]
    Khandare, J.; Minko, T. Polymer–drug conjugates: Progress in polymeric prodrugs. Prog. Polym. Sci. 2006, 31, 359–397.CrossRefGoogle Scholar
  14. [14]
    Aminabhavi, T. M.; Nadagouda, M. N.; More, U. A.; Joshi, S. D.; Kulkarni, V. H.; Noolvi, M. N.; Kulkarni, P. V. Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin. Drug Deliv. 2015, 12, 669–688.CrossRefGoogle Scholar
  15. [15]
    Zhang, X.-Z.; Jo Lewis, P.; Chu, C.-C. Fabrication and characterization of a smart drug delivery system: Microsphere in hydrogel. Biomaterials 2005, 26, 3299–3309.CrossRefGoogle Scholar
  16. [16]
    Mourtas, S.; Fotopoulou, S.; Duraj, S.; Sfika, V.; Tsakiroglou, C.; Antimisiaris, S. G. Liposomal drugs dispersed in hydrogels: Effect of liposome, drug and gel properties on drug release kinetics. Colloids Surf. B Biointerfaces 2007, 55, 212–221.CrossRefGoogle Scholar
  17. [17]
    Wei, L.; Cai, C. H.; Lin, J. P.; Chen, T. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials 2009, 30, 2606–2613.CrossRefGoogle Scholar
  18. [18]
    Josef, E.; Barat, K.; Barsht, I.; Zilberman, M.; Bianco-Peled, H. Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomater. 2013, 9, 8815–8822.CrossRefGoogle Scholar
  19. [19]
    Lynch, I.; Dawson, K. A. Synthesis and characterization of an extremely versatile structural motif called the “plumpudding” gel. J. Phys. Chem. B 2003, 107, 9629–9637.CrossRefGoogle Scholar
  20. [20]
    Lynch, I.; Dawson, K. A. Release of model compounds from “plum-pudding”-type gels composed of microgel particles randomly dispersed in a gel matrix. J. Phys. Chem. B 2004, 108, 10893–10898.CrossRefGoogle Scholar
  21. [21]
    Satarkar, N. S.; Biswal, D.; Hilt, J. Z. Hydrogel nanocomposites: A review of applications as remote controlled biomaterials. Soft Matter. 2010, 6, 2364–2371.CrossRefGoogle Scholar
  22. [22]
    Kikuchi, A.; Okano, T. Pulsatile drug release control using hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 53–77.CrossRefGoogle Scholar
  23. [23]
    Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53, 321–339.CrossRefGoogle Scholar
  24. [24]
    Vaz, B.; Salgueiriño, V.; Pérez-Lorenzo, M.; Correa-Duarte, M. A. Enhancing the exploitation of functional nanomaterials through spatial confinement: The case of inorganic submicrometer capsules. Langmuir 2015, 31, 8745–8755.CrossRefGoogle Scholar
  25. [25]
    Jain, P. K.; El-Sayed, M. A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010, 487, 153–164.CrossRefGoogle Scholar
  26. [26]
    Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.CrossRefGoogle Scholar
  27. [27]
    Espinosa, A.; Silva, A. K. A.; Sánchez-Iglesias, A.; Grzelczak, M.; Péchoux, C.; Desboeufs, K.; Liz-Marzán, L. M.; Wilhelm, C. Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: Toward a plasmonic thermal fingerprint in tumoral environment. Adv. Healthc. Mater. 2016, 5, 1040–1048.CrossRefGoogle Scholar
  28. [28]
    Topete, A.; Alatorre-Meda, M.; Villar-Alvarez, E. M.; Carregal-Romero, S.; Barbosa, S.; Parak, W. J.; Taboada, P.; Mosquera, V. Polymeric-gold nanohybrids for combined imaging and cancer therapy. Adv. Healthc. Mater. 2014, 3, 1309–1325.CrossRefGoogle Scholar
  29. [29]
    Zhang, Y.; Hsu, B. Y. W.; Ren, C. L.; Li, X.; Wang, J. Silica-based nanocapsules: Synthesis, structure control and biomedical applications. Chem. Soc. Rev. 2015, 44, 315–335.CrossRefGoogle Scholar
  30. [30]
    Ernawati, L.; Ogi, T.; Balgis, R.; Okuyama, K.; Stucki, M.; Hess, S. C.; Stark, W. J. Hollow silica as an optically transparent and thermally insulating polymer additive. Langmuir 2016, 32, 338–345.CrossRefGoogle Scholar
  31. [31]
    Taylor, A. B.; Siddiquee, A. M.; Chon, J. W. M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano 2014, 8, 12071–12079.CrossRefGoogle Scholar
  32. [32]
    Kim, K.; Jo, M.-C.; Jeong, S.; Palanikumar, L.; Rotello, V. M.; Ryu, J.-H.; Park, M.-H. Externally controlled drug release using a gold nanorod contained composite membrane. Nanoscale 2016, 8, 11949–11955.CrossRefGoogle Scholar
  33. [33]
    Hribar, K. C.; Lee, M. H.; Lee, D.; Burdick, J. A. Enhanced release of small molecules from near-infrared light responsive polymer−nanorod composites. ACS Nano 2011, 5, 2948–2956.CrossRefGoogle Scholar
  34. [34]
    Hoare, T.; Santamaria, J.; Goya, G. F.; Irusta, S.; Lin, D.; Lau, S.; Padera, R.; Langer, R.; Kohane, D. S. A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 2009, 9, 3651–3657.CrossRefGoogle Scholar
  35. [35]
    Derfus, A. M.; von Maltzahn, G.; Harris, T. J.; Duza, T.; Vecchio, K. S.; Ruoslahti, E.; Bhatia, S. N. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 2007, 19, 3932–3936.CrossRefGoogle Scholar
  36. [36]
    Shchukin, D. G.; Radtchenko, I. L.; Sukhorukov, G. B. Photoinduced reduction of silver inside microscale polyelectrolyte capsules. ChemPhysChem 2003, 4, 1101–1103.CrossRefGoogle Scholar
  37. [37]
    Duff, D. G.; Baiker, A.; Edwards, P. P. A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 1993, 9, 2301–2309.Google Scholar
  38. [38]
    Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.CrossRefGoogle Scholar
  39. [39]
    Pham, T.; Jackson, J. B.; Halas, N. J.; Lee, T. R. Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 2002, 18, 4915–4920.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elena González-Domínguez
    • 1
  • Benito Rodríguez-González
    • 1
  • Moisés Pérez-Lorenzo
    • 1
  • Miguel A. Correa-Duarte
    • 1
  1. 1.Department of Physical Chemistry, Biomedical Research Center (CINBIO) and Southern Galicia Institute of Health Research (IISGS)Universidade de Vigo36310Spain

Personalised recommendations