Advertisement

Nano Research

, Volume 10, Issue 6, pp 2156–2167 | Cite as

Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries

  • Hong Yin
  • Qingwei Li
  • Minglei Cao
  • Wei Zhang
  • Han Zhao
  • Chong LiEmail author
  • Kaifu Huo
  • Mingqiang ZhuEmail author
Research Article

Abstract

Bi is a promising candidate for energy storage materials because of its high volumetric capacity, stability in moisture/air, and facile preparation. In this study, the electrochemical performance of nanosized-Bi-embedded one-dimensional (1D) carbon nanofibers (Bi/C nanofibers) as anodes for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was systematically investigated. The Bi/C nanofibers were prepared using a single-nozzle electrospinning method with a specified Bi source followed by carbothermal reduction. Abundant Bi nanoparticles with diameters of approximately 20 nm were homogeneously dispersed and embedded in the 1D carbon nanofibers, as confirmed by structural and morphological characterization. Electrochemical measurements indicate that the Bi/C nanofiber anodes could deliver a long cycle life for LIBs and a preferable rate performance for NIBs. The superior electrochemical performances of the Bi/C nanofiber anodes are attributed to the 1D carbon nanofiber structure and uniform distribution of Bi nanoparticles embedded in the carbon matrix. This unique embedded structure provides a favorable electron carrier and buffering matrix for the effective release of mechanical stress caused by volume change and prevents the aggregation of Bi nanoparticles.

Keywords

high volumetric capacity Bi/C nanofibers lithium-ion batteries sodium-ion batteries electrospinning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2015CB755602 and 2013CB922104), the National Natural Science Foundation of China (Nos. 21474034, 51673077, and 51603078), the Fundamental Research Funds for the Central Universities (HUST: No. 2016YXMS029) and Director Fund of WNLO. We also thank the Analytical and Testing Center of Huazhong University of Science and Technology and the Center of Micro-Fabrication and Characterization (CMFC) of WNLO for use of their facilities.

Supplementary material

12274_2016_1408_MOESM1_ESM.pdf (2.1 mb)
Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries

References

  1. [1]
    Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.CrossRefGoogle Scholar
  2. [2]
    Roberts, A. D.; Li, X.; Zhang, H. F. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 2014, 43, 4341–4356.CrossRefGoogle Scholar
  3. [3]
    Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.CrossRefGoogle Scholar
  4. [4]
    Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.CrossRefGoogle Scholar
  5. [5]
    Okuyama, R.; Nakashima, H.; Sano, T.; Nomura, E. The effect of metal sulfides in the cathode on Na/S battery performance. J. Power Sources 2001, 93, 50–54.CrossRefGoogle Scholar
  6. [6]
    Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395.CrossRefGoogle Scholar
  7. [7]
    Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578–3606.CrossRefGoogle Scholar
  8. [8]
    Xiang, X. D.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343–5364.CrossRefGoogle Scholar
  9. [9]
    Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.CrossRefGoogle Scholar
  10. [10]
    Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M.-M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.CrossRefGoogle Scholar
  11. [11]
    Goodenough, J. B.; Singh, P. Review—Solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc. 2015, 162, A2387–A2392.Google Scholar
  12. [12]
    Palomares, V.; Casas-Cabanas, M.; Castillo-Martí nez, E.; Han, M. H.; Rojo, T. Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 2013, 6, 2312–2337.Google Scholar
  13. [13]
    Song, J. X.; Yu, Z. X.; Gordin, M. L.; Li, X. L.; Peng, H. S.; Wang, D. H. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933–11941.CrossRefGoogle Scholar
  14. [14]
    Wu, C.; Kopold, P.; Ding, Y.-L.; van Aken, P. A.; Maier, J.; Yu, Y. Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 2015, 9, 6610–6618.CrossRefGoogle Scholar
  15. [15]
    Sun, X.; Ji, X.-Y.; Xu, H.-Y.; Zhang, C.-Y.; Shao, Y.; Zang, Y.; Chen, C.-H. Sodium insertion cathode material Na0.67[Ni0.4Co0.2Mn0.4]O2 with excellent electrochemical properties. Electrochim. Acta 2016, 208, 142–147.CrossRefGoogle Scholar
  16. [16]
    Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Carbon black: A promising electrode material for sodium-ion batteries. Electrochem. Commun. 2001, 3, 639–642.CrossRefGoogle Scholar
  17. [17]
    Thomas, P.; Ghanbaja, J.; Billaud, D. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte. Electrochim. Acta 1999, 45, 423–430.CrossRefGoogle Scholar
  18. [18]
    Ponrouch, A.; Goñi, A. R.; Palacín, M. R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem. Commun. 2013, 27, 85–88.CrossRefGoogle Scholar
  19. [19]
    Thomas, P.; Billaud, D. Electrochemical insertion of sodium into hard carbons. Electrochim. Acta 2002, 47, 3303–3307.CrossRefGoogle Scholar
  20. [20]
    Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Roomtemperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 2011, 4, 3342–3345.CrossRefGoogle Scholar
  21. [21]
    Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Wang, C. S. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 2013, 3, 128–133.CrossRefGoogle Scholar
  22. [22]
    Wang, H. G.; Yuan, S.; Ma, D. L.; Zhang, X. B.; Yan, J. M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681.CrossRefGoogle Scholar
  23. [23]
    Li, W. J.; Chou, S.-L.; Wang, J.-Z.; Kim, J. H.; Liu, H.-K.; Dou, S.-X. Sn4+xP3@amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv. Mater. 2014, 26, 4037–4042.CrossRefGoogle Scholar
  24. [24]
    Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as highperformance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214–220.CrossRefGoogle Scholar
  25. [25]
    Kim, C.; Gwon, O.; Jeon, I. Y.; Kim, Y.; Shin, J.; Ju, Y. W.; Baek, J. B.; Kim, G. Cloud-like graphene nanoplatelets on Nd0.5Sr0.5CoO3-d nanorods as an efficient bifunctional electrocatalyst for hybrid Li-air batteries. J. Mater. Chem. A 2016, 4, 2122–2127.CrossRefGoogle Scholar
  26. [26]
    Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.CrossRefGoogle Scholar
  27. [27]
    Datta, M. K.; Epur, R.; Saha, P.; Kadakia, K.; Park, S. K.; Kumta, P. N. Tin and graphite based nanocomposites: Potential anode for sodium ion batteries. J. Power Sources 2013, 225, 316–322.CrossRefGoogle Scholar
  28. [28]
    Mortazavi, M.; Deng, J.; Shenoy, V. B.; Medhekar, N. V. Elastic softening of alloy negative electrodes for Na-ion batteries. J. Power Sources 2013, 225, 207–214.CrossRefGoogle Scholar
  29. [29]
    Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.CrossRefGoogle Scholar
  30. [30]
    He, M.; Walter, M.; Kravchyk, K. V.; Erni, R.; Widmer, R.; Kovalenko, M. V. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: Synergy and dissonance between Sn and Sb. Nanoscale 2015, 7, 455–459.CrossRefGoogle Scholar
  31. [31]
    Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.CrossRefGoogle Scholar
  32. [32]
    Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 52, 4633–4636.CrossRefGoogle Scholar
  33. [33]
    Yan, D.; Yu, C. Y.; Bai, Y.; Zhang, W. F.; Chen, T. Q.; Hu, B. W.; Sun, Z.; Pan, L. K. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem. Commun. 2015, 51, 8261–8264.CrossRefGoogle Scholar
  34. [34]
    Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328.CrossRefGoogle Scholar
  35. [35]
    Wang, S. Q.; Xia, L.; Yu, L.; Zhang, L.; Wang, H. H.; Lou, X. W. D. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 2016, 6, 1502217.CrossRefGoogle Scholar
  36. [36]
    Park, C.-M.; Yoon, S.; Lee, S.-I.; Sohn, H.-J. Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J. Power Sources 2009, 186, 206–210.CrossRefGoogle Scholar
  37. [37]
    Su, D. W.; Dou, S. X.; Wang, G. X. Bismuth: A new anode for the Na-ion battery. Nano Energy 2015, 12, 88–95.CrossRefGoogle Scholar
  38. [38]
    Yang, F. H.; Yu, F.; Zhang, Z.; Zhang, K.; Lai, Y. Q.; Li, J. Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem.—Eur. J. 2016, 22, 2333–2338.CrossRefGoogle Scholar
  39. [39]
    Zuo, W. H.; Zhu, W. H.; Zhao, D. F.; Sun, Y. F.; Li, Y. Y.; Liu, J. P.; Lou, X. W. Bismuth oxide: A versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 2016, 9, 2881–2891.CrossRefGoogle Scholar
  40. [40]
    Zhang, W. X.; Liu, J.; Wu, G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon 2003, 41, 2805–2812.CrossRefGoogle Scholar
  41. [41]
    Chen, J. C.; Harrison, I. R. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 2002, 40, 25–45.CrossRefGoogle Scholar
  42. [42]
    Dalton, S.; Heatley, F.; Budd, P. M. Thermal stabilization of polyacrylonitrile fibres. Polymer 1999, 40, 5531–5543.CrossRefGoogle Scholar
  43. [43]
    Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stabil. 2007, 92, 1421–1432.CrossRefGoogle Scholar
  44. [44]
    Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.CrossRefGoogle Scholar
  45. [45]
    Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.CrossRefGoogle Scholar
  46. [46]
    Jahel, A.; Darwiche, A.; Matei Ghimbeu, C.; Vix-Guterl, C.; Monconduit, L. High cycleability nano-GeO2/mesoporous carbon composite as enhanced energy storage anode material in Li-ion batteries. J. Power Sources 2014, 269, 755–759.CrossRefGoogle Scholar
  47. [47]
    Song, J.; Wang, L.; Lu, Y. H.; Liu, J.; Guo, B. K.; Xiao, P. H.; Lee, J.-J.; Yang, X.-Q.; Henkelman, G.; Goodenough, J. B. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 2015, 137, 2658–2664.CrossRefGoogle Scholar
  48. [48]
    Zhao, Y. B.; Manthiram, A. High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 2015, 27, 3096–3101.CrossRefGoogle Scholar
  49. [49]
    Wang, Y.; Su, D. W.; Wang, C. Y.; Wang, G. X. SnO2@ MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun 2013, 29, 8–11.CrossRefGoogle Scholar
  50. [50]
    Liu, J. H.; Liu, X.-W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097–4111.CrossRefGoogle Scholar
  51. [51]
    Wang, Y.-X.; Lim, Y.-G.; Park, M.-S.; Chou, S.-L.; Kim, J. H.; Liu, H.-K.; Dou, S.-X.; Kim, Y.-J. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2014, 2, 529–534.CrossRefGoogle Scholar
  52. [52]
    Kim, K.-T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y.-K.; Lu, J.; Amine, K.; Myung, S.-T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.CrossRefGoogle Scholar
  53. [53]
    Sottmann, J.; Herrmann, M.; Vajeeston, P.; Hu, Y.; Ruud, A.; Drathen, C.; Emerich, H.; Fjellvå g, H.; Wragg, D. S. How crystallite size controls the reaction path in nonaqueous metal ion batteries: The example of sodium bismuth alloying. Chem. Mater. 2016, 28, 2750–2756.CrossRefGoogle Scholar
  54. [54]
    NuLi, Y.; Yang, J.; Jiang, M. S. Synthesis and characterization of Sb/CNT and Bi/CNT composites as anode materials for lithium-ion batteries. Mater. Lett. 2008, 62, 2092–2095.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations