Nano Research

, Volume 10, Issue 6, pp 2146–2155 | Cite as

Cooperative interactions among CTA+, Br and Ag+ during seeded growth of gold nanorods

  • Yong Xu
  • Lei Chen
  • Xingchen Ye
  • Xuchun Wang
  • Jiaqi Yu
  • Yang Zhao
  • Muhan Cao
  • Zhouhui Xia
  • Baoquan SunEmail author
  • Qiao ZhangEmail author
Research Article


We have carried out a comprehensive study on the formation mechanism of Au nanorods (AuNRs) in binary surfactant mixtures composed of quaternary ammonium halide and sodium oleate (NaOL). We identify the cetyltrimethyl ammonium (CTA)-Br-Ag+ complex as the key ingredient in directing the anisotropic growth of AuNRs. Based on the improved understanding of the cooperative interactions among CTA+, Br and Ag+, we further demonstrate that AgBr, which is readily solubilized by the cetyltrimethyl ammonium bromide (CTAB) or cetyltrimethyl ammonium chloride (CTAC) micelles, can be employed as the combined source of Ag+ and Br for the preparation of AuNRs. The growth of high-quality AuNRs can be completed within 15 min under extremely low bromide content (0.1 mM).


gold nanorods anisotropic nanostructure surface plasmon resonance seeded growth cetyltrimethyl ammonium bromide (CTAB) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the Collaborative Innovation Center of Suzhou Nano Science & Technology, the SWC Center for Synchrotron Radiation Research, the Priority Academic Program Development of Jiangsu Higher Education Institu-tions, the National Natural Science Foundation of China (Nos. 21401135 and 21673150) and the Natural Science Foundation of Jiangsu Province (No. BK20140304) for funding support.

Supplementary material

12274_2016_1404_MOESM1_ESM.pdf (3.4 mb)
Cooperative interactions among CTA+, Br and Ag+ during seeded growth of gold nanorods


  1. [1]
    Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.CrossRefGoogle Scholar
  2. [2]
    Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G. Plasmonic/magnetic bifunctional nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 3158–3163.CrossRefGoogle Scholar
  3. [3]
    Fu, C. H.; He, C. F.; Tan, L. F.; Wang, S. H.; Shang, L.; Li, L. L.; Meng, X. W.; Liu, H. Y. High-yield preparation of robust gold nanoshells on silica nanorattles with good biocompatiblity. Sci. Bull. 2016, 61, 282–291.CrossRefGoogle Scholar
  4. [4]
    Mettela, G.; Kulkarni, G. U. Facet selective etching of Au microcrystallites. Nano Res. 2015, 8, 2925–2934.CrossRefGoogle Scholar
  5. [5]
    Ma, L. G.; Huang, Z. H.; Duan, Y. Y.; Shen, X. F.; Che, S. Optically active chiral Ag nanowires. Sci. China Mater. 2015, 58, 441–446.CrossRefGoogle Scholar
  6. [6]
    Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.CrossRefGoogle Scholar
  7. [7]
    Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 2009, 3, 80–86.CrossRefGoogle Scholar
  8. [8]
    Grabinski, C.; Schaeublin, N.; Wijaya, A.; D’Couto, H.; Baxamusa, S. H.; Hamad-Schifferli, K.; Hussain, S. M. Effect of gold nanorod surface chemistry on cellular response. ACS Nano 2011, 5, 2870–2879.CrossRefGoogle Scholar
  9. [9]
    Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636.CrossRefGoogle Scholar
  10. [10]
    Wang, L. B.; Zhu, Y. Y.; Xu, L. G.; Chen, W.; Kuang, H.; Liu, L. Q.; Agarwal, A.; Xu, C. L.; Kotov, N. A. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew. Chem., Int. Ed. 2010, 49, 5472–5475.CrossRefGoogle Scholar
  11. [11]
    Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387–12391.CrossRefGoogle Scholar
  12. [12]
    Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.CrossRefGoogle Scholar
  13. [13]
    Huschka, R.; Zuloaga, J.; Knight, M. W.; Brown, L. V.; Nordlander, P.; Halas, N. J. Light-induced release of DNA from gold nanoparticles: Nanoshells and nanorods. J. Am. Chem. Soc. 2011, 133, 12247–12255.CrossRefGoogle Scholar
  14. [14]
    Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.CrossRefGoogle Scholar
  15. [15]
    Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.CrossRefGoogle Scholar
  16. [16]
    Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549–13554.CrossRefGoogle Scholar
  17. [17]
    Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941–945.CrossRefGoogle Scholar
  18. [18]
    Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker. Nano Lett. 2007, 7, 1591–1597.CrossRefGoogle Scholar
  19. [19]
    Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; de la Fuentea, J. M. et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 2016, 10, 2375–2385.CrossRefGoogle Scholar
  20. [20]
    Rycenga, M.; McLellan, J. M.; Xia, Y. N. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 2008, 20, 2416–2420.CrossRefGoogle Scholar
  21. [21]
    Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surfaceenhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229–1233.CrossRefGoogle Scholar
  22. [22]
    Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911.CrossRefGoogle Scholar
  23. [23]
    Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbó- Argibay, E.; Pazos-Pé rez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A. et al. Gold nanorods 3D-supercrystals as surface Enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 2011, 108, 8157–8161.CrossRefGoogle Scholar
  24. [24]
    Xu, Y.; Zhao, Y.; Chen, L.; Wang, X. C.; Sun, J. X.; Wu, H. H.; Bao, F.; Fan, J.; Zhang, Q. Large-scale, low-cost synthesis of monodispersed gold nanorods using a gemini surfactant. Nanoscale 2015, 7, 6790–6797.CrossRefGoogle Scholar
  25. [25]
    Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. Gold nanorods: Electrochemical synthesis and optical properties. J. Phys. Chem. B 1997, 101, 6661–6664.CrossRefGoogle Scholar
  26. [26]
    Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393.CrossRefGoogle Scholar
  27. [27]
    Busbee, B. D.; Obare, S. O.; Murphy, C. J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 2003, 15, 414–416.CrossRefGoogle Scholar
  28. [28]
    Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.CrossRefGoogle Scholar
  29. [29]
    Wu, H. Y.; Chu, H. C.; Kuo, T. J.; Kuo, C. L.; Huang, M. H. Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid. Chem. Mater. 2005, 17, 6447–6451.CrossRefGoogle Scholar
  30. [30]
    Zhu, J.; Yong, K. T.; Roy, I.; Hu, R.; Ding, H.; Zhao, L. L.; Swihart, M. T.; He, G. S.; Cui, Y. P.; Prasad, P. N. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology 2010, 21, 285106.CrossRefGoogle Scholar
  31. [31]
    Kim, F.; Sohn, K.; Wu, J. S.; Huang, J. X. Chemical synthesis of gold nanowires in acidic solutions. J. Am. Chem. Soc. 2008, 130, 14442–14443.CrossRefGoogle Scholar
  32. [32]
    Zweifel, D. A.; Wei, A. Sulfide-arrested growth of gold nanorods. Chem. Mater. 2005, 17, 4256–4261.CrossRefGoogle Scholar
  33. [33]
    Smith, D. K.; Miller, N. R.; Korgel, B. A. Iodide in CTAB prevents gold nanorod formation. Langmuir 2009, 25, 9518–9524.CrossRefGoogle Scholar
  34. [34]
    Smith, D. K.; Korgel, B. A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 2008, 24, 644–649.CrossRefGoogle Scholar
  35. [35]
    Rayavarapu, R. G.; Ungureanu, C.; Krystek, P.; van Leeuwen, T. G.; Manohar, S. Iodide impurities in hexadecyltrimethylammonium bromide (CTAB) products: Lot–lot variations and influence on gold nanorod synthesis. Langmuir 2010, 26, 5050–5055.CrossRefGoogle Scholar
  36. [36]
    Sau, T. K.; Murphy, C. J. Role of ions in the colloidal synthesis of gold nanowires. Philos. Mag. 2007, 87, 2143–2158.CrossRefGoogle Scholar
  37. [37]
    Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett. 2013, 13, 2163–2171.CrossRefGoogle Scholar
  38. [38]
    Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.CrossRefGoogle Scholar
  39. [39]
    Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.CrossRefGoogle Scholar
  40. [40]
    Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.CrossRefGoogle Scholar
  41. [41]
    Garg, N.; Scholl, C.; Mohanty, A.; Jin, R. C. The role of bromide ions in seeding growth of Au nanorods. Langmuir 2010, 26, 10271–10276.CrossRefGoogle Scholar
  42. [42]
    Liu, M. Z.; Guyot-Sionnest, P. Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 2005, 109, 22192–22200.CrossRefGoogle Scholar
  43. [43]
    Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett. 2011, 11, 3394–3398.CrossRefGoogle Scholar
  44. [44]
    Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.CrossRefGoogle Scholar
  45. [45]
    Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765–1770.CrossRefGoogle Scholar
  46. [46]
    Hubert, F.; Testard, F.; Spalla, O. Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods. Langmuir 2008, 24, 9219–9222.CrossRefGoogle Scholar
  47. [47]
    Pérez-Juste, J.; Liz-Marzán, L.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 2004, 14, 571–579.CrossRefGoogle Scholar
  48. [48]
    Jackson, S. R.; McBride, J. R.; Rosenthal, S. J.; Wright, D. W. Where’s the silver? Imaging trace silver coverage on the surface of gold nanorods. J. Am. Chem. Soc. 2014, 136, 5261–5263.CrossRefGoogle Scholar
  49. [49]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  50. [50]
    Bullen, C.; Zijlstra, P.; Bakker, E.; Gu, M.; Raston, C. Chemical kinetics of gold nanorod growth in aqueous CTAB solutions. Cryst. Growth Des. 2011, 11, 3375–3380.CrossRefGoogle Scholar
  51. [51]
    Almora-Barrios, N.; Novell-Leruth, G.; Whiting, P.; Liz-Marzán, L. M.; López, N. Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano Lett. 2014, 14, 871–875.CrossRefGoogle Scholar
  52. [52]
    Ito, K.; Ariyoshi, Y.; Tanabiki, F.; Sunahara, H. Anion chromatography using octadecylsilane reversed-phase columns coated with cetyltrimethylammonium and its application to nitrite and nitrate in seawater. Anal. Chem. 1991, 63, 273–276.CrossRefGoogle Scholar
  53. [53]
    Liu, X. H.; Luo, X. H.; Lu, S. X.; Zhang, J. C.; Cao, W. L. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion. J. Colloid Interface Sci. 2007, 307, 94–100.CrossRefGoogle Scholar
  54. [54]
    Calabrese, J.; Jones, N. L.; Harlow, R. L.; Herron, N.; Thorn, D. L.; Wang, Y. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328–2330.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yong Xu
    • 1
  • Lei Chen
    • 1
  • Xingchen Ye
    • 2
  • Xuchun Wang
    • 1
  • Jiaqi Yu
    • 1
  • Yang Zhao
    • 1
  • Muhan Cao
    • 1
  • Zhouhui Xia
    • 1
  • Baoquan Sun
    • 1
    Email author
  • Qiao Zhang
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
  2. 2.Department of ChemistryUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations