Nano Research

, Volume 10, Issue 8, pp 2545–2559 | Cite as

Fluorescent nanoswitch for monitoring specific pluripotency-related microRNAs of induced pluripotent stem cells: Development of polyethyleneimine-oligonucleotide hybridization probes

  • Seungmin Han
  • Hye Young Son
  • Byunghoon Kang
  • Eunji Jang
  • Jisun Ki
  • Na Geum Lee
  • Jongjin Park
  • Moo-Kwang Shin
  • Byeonggeol Mun
  • Jeong-Ki MinEmail author
  • Seungjoo HaamEmail author
Research Article


The isolation of high-grade (i.e. high-pluripotency) human induced pluripotent stem cells (hiPSCs) is a decisive factor for enhancing the purity of hiPSC populations or differentiation efficiency. A non-invasive imaging system that can monitor microRNA (miRNA) expression provides a useful tool to identify and analyze specific cell populations. However, previous studies on the monitoring/isolation of hiPSCs by miRNA expression have limited hiPSCs’ differentiation system owing to long-term incubation with miRNA imaging probe-nanocarriers. Therefore, we focused on monitoring high-grade hiPSCs without influencing the pluripotency of hiPSCs. We reduced nanoparticle transfection time, because hiPSCs are prone to spontaneous differentiation under external factors during incubation. The fluorescent nanoswitch (“ON” with target miRNA), which can be applied for either imaging or sorting specific cells by fluorescence signals, contains an miRNA imaging probe (miP) and a PEI-PEG nanoparticle (miP-P). Consequently, this nanoswitch can sense various endogenous target miRNAs within 30 min in vitro, and demonstrates strong potential for not only imaging but also sorting pluripotent hiPSCs without affecting pluripotency. Moreover, miP-P-treated hiPSCs differentiate well into endothelial cells, indicating that miP-P does not alter the pluripotency of hiPSCs. We envisage that this miRNA imaging system could be valuable for identifying and sorting high-grade hiPSCs for improved practical applications.


induced pluripotent stem cells (iPSCs) pluripotency microRNA (miRNA) fluorescence imaging nanoparticle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MEST) (Nos. NRF-2012M3A9C6050077, NRF-2012M3A9C6050331, and NRF-2012M3A9C6050332), and the NRF-2013 Global Ph.D. Fellowship Program (No. NRF-2013H1A2A1034907).

Supplementary material

12274_2016_1403_MOESM1_ESM.pdf (2.2 mb)
Fluorescent nanoswitch for monitoring specific pluripotency-related microRNAs of induced pluripotent stem cells: Development of polyethyleneimine-oligonucleotide hybridization probes


  1. [1]
    Huang, G. T. J. Induced pluripotent stem cells—A new foundation in medicine. J. Exp. Clin. Med. 2010, 2, 202–217.CrossRefGoogle Scholar
  2. [2]
    Schwartz, P. H.; Wesselschmidt, R. L. Human Pluripotent Stem Cells: Methods and Protocols; Humana Press: New York, 2011.CrossRefGoogle Scholar
  3. [3]
    Hayat, M. A. Stem Cells and Cancer Stem Cells; Springer: Netherlands, 2014.CrossRefGoogle Scholar
  4. [4]
    Xu, X. B.; Smorag, L.; Nakamura, T.; Kimura, T.; Dressel, R.; Fitzner, A.; Tan, X. Y.; Linke, M.; Zechner, U.; Engel, W. et al. Dppa3 expression is critical for generation of fully reprogrammed iPS cells and maintenance of Dlk1-Dio3 imprinting. Nat. Commun. 2015, 6, 6008.CrossRefGoogle Scholar
  5. [5]
    Stadtfeld, M.; Apostolou, E.; Akutsu, H.; Fukuda, A.; Follett, P.; Natesan, S.; Kono, T.; Shioda, T.; Hochedlinger, K. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 2010, 465, 175–181.CrossRefGoogle Scholar
  6. [6]
    Son, Y. S.; Seong, R. H.; Ryu, C. J.; Cho, Y. S.; Bae, K. H.; Chung, S. J.; Lee, B.; Min, J. K.; Hong, H. J. Brief report: L1 cell adhesion molecule, a novel surface molecule of human embryonic stem cells, is essential for self-renewal and pluripotency. Stem Cells 2011, 29, 2094–2099.CrossRefGoogle Scholar
  7. [7]
    Dong, H. F.; Lei, J. P.; Ding, L.; Wen, Y. Q.; Ju, H. X.; Zhang, X. J. MicroRNA: Function, detection, and bioanalysis. Chem. Rev. 2013, 113, 6207–6233.CrossRefGoogle Scholar
  8. [8]
    Huang, X. A.; Lin, H. F. The microRNA regulation of stem cells. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 83–95.CrossRefGoogle Scholar
  9. [9]
    Sohn, Y. D.; Somasuntharam, I.; Che, P. L.; Jayswal, R.; Murthy, N.; Davis, M. E.; Yoon, Y. S. Induction of pluripotency in bone marrow mononuclear cells via polyketal nanoparticle-mediated delivery of mature microRNAs. Biomaterials 2013, 34, 4235–4241.CrossRefGoogle Scholar
  10. [10]
    Anokye-Danso, F.; Trivedi, C. M.; Juhr, D.; Gupta, M.; Cui, Z.; Tian, Y.; Zhang, Y. Z.; Yang, W. L.; Gruber, P. J.; Epstein, J. A. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011, 8, 376–388.CrossRefGoogle Scholar
  11. [11]
    Anokye-Danso, F.; Snitow, M.; Morrisey, E. E. How microRNAs facilitate reprogramming to pluripotency. J. Cell Sci. 2012, 125, 4179–4187.CrossRefGoogle Scholar
  12. [12]
    Kuo, C. H.; Deng, J. H.; Deng, Q. G.; Ying, S. Y. A novel role of miR-302/367 in reprogramming. Biochem. Biophys. Res. Commun. 2012, 417, 11–16.CrossRefGoogle Scholar
  13. [13]
    Mallanna, S. K.; Rizzino, A. Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev. Biol. 2010, 344, 16–25.CrossRefGoogle Scholar
  14. [14]
    Wilson, K. D.; Venkatasubrahmanyam, S.; Jia, F. J.; Sun, N.; Butte, A. J.; Wu, J. C. MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev. 2009, 18, 749–757.CrossRefGoogle Scholar
  15. [15]
    Wang, X.; Chen, X. S.; Zhang, H. J.; Qin, W. Y.; Xue, Y.; Zeng, F. Y. Shared gene regulation during human somatic cell reprogramming. J. Genet. Genomics 2012, 39, 613–623.CrossRefGoogle Scholar
  16. [16]
    Zhao, B. T.; Yang, D. Y.; Jiang, J.; Li, J. S.; Fan, C. S.; Huang, M. G.; Fan, Y.; Jin, Y.; Jin, Y. X. Genome-wide mapping of miRNAs expressed in embryonic stem cells and pluripotent stem cells generated by different reprogramming strategies. BMC Genomics 2014, 15, 488.CrossRefGoogle Scholar
  17. [17]
    Tian, T.; Wang, J. Q.; Zhou, X. A review: MicroRNA detection methods. Org. Biomol. Chem. 2015, 13, 2226–2238.CrossRefGoogle Scholar
  18. [18]
    Wang, Z.; Zhang, R. L.; Wang, Z. L.; Wang, H. F.; Wang, Y.; Zhao, J.; Wang, F.; Li, W. T.; Niu, G.; Kiesewetter, D. O. et al. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells. ACS Nano 2014, 8, 12386–12396.CrossRefGoogle Scholar
  19. [19]
    Hernandez, R.; Orbay, H.; Cai, W. B. Molecular imaging strategies for in vivo tracking of microRNAs: A comprehensive review. Curr. Med. Chem. 2013, 20, 3594–3603.CrossRefGoogle Scholar
  20. [20]
    Noh, E.-H.; Ko, H. Y.; Lee, C. H.; Jeong, M.-S.; Chang, Y. W.; Kim, S. Carbon nanodot-based self-delivering microRNA sensor to visualize microRNA124a expression during neurogenesis. J. Mater. Chem. B 2013, 1, 4438–4445.CrossRefGoogle Scholar
  21. [21]
    Ko, H. Y.; Lee, J.; Lee, Y. S.; Gu, H. N.; Ali, B. A.; Al-Khedhairy, A. A.; Heo, H.; Cho, S.; Kim, S. Bioimaging of the microRNA-294 expression-dependent color change in cells by a dual fluorophore-based molecular beacon. Chem. Commun. 2015, 51, 2159–2161.CrossRefGoogle Scholar
  22. [22]
    Ko, H. Y.; Lee, J.; Joo, J. Y.; Lee, Y. S.; Heo, H.; Ko, J. J.; Kim, S. A color-tunable molecular beacon to sense miRNA-9 expression during neurogenesis. Sci. Rep. 2014, 4, 4626.CrossRefGoogle Scholar
  23. [23]
    Deng, D.; Li, Y.; Xue, J.; Wang, J.; Ai, G.; Li, X.; Gu, Y. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: A case optimized by bioinformatics screen. Int. J. Nanomedicine 2015, 10, 3231–3244.CrossRefGoogle Scholar
  24. [24]
    Nayerossadat, N.; Maedeh, T.; Ali, P. A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res. 2012, 1, 27.CrossRefGoogle Scholar
  25. [25]
    Van Tendeloo, V. F. I.; Ponsaerts, P.; Lardon, F.; Nijs, G.; Lenjou, M.; Van Broeckhoven, C.; Van Bockstaele, D. R.; Berneman, Z. N. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: Superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001, 98, 49–56.CrossRefGoogle Scholar
  26. [26]
    Devulapally, R.; Sekar, N. M.; Sekar, T. V.; Foygel, K.; Massoud, T. F.; Willmann, J. K.; Paulmurugan, R. Polymer nanoparticles mediated codelivery of AntimiR-10b and AntimiR-21 for achieving triple negative breast cancer therapy. ACS Nano 2015, 9, 2290–2302.CrossRefGoogle Scholar
  27. [27]
    Kim, E.; Yang, J.; Park, J.; Kim, S.; Kim, N. H.; Yook, J. I.; Suh, J. S.; Haam, S.; Huh, Y. M. Consecutive targetable smart nanoprobe for molecular recognition of cytoplasmic microRNA in metastatic breast cancer. ACS Nano 2012, 6, 8525–8535.CrossRefGoogle Scholar
  28. [28]
    van Rossenberg, S. M.; van Keulen, A. C. I.; Drijfhout, J. W.; Vasto, S.; Koerten, H. K.; Spies, F.; van’t Noordende, J. M.; van Berkel, T. J. C.; Biessen, E. A. L. Stable polyplexes based on arginine-containing oligopeptides for in vivo gene delivery. Gene Ther. 2004, 11, 457–464.CrossRefGoogle Scholar
  29. [29]
    Wiraja, C.; Yeo, D. C.; Chew, S. Y.; Xu, C. J. Molecular beacon-loaded polymeric nanoparticles for non-invasive imaging of mRNA expression. J. Mater. Chem. B 2015, 3, 6148–6156.CrossRefGoogle Scholar
  30. [30]
    Kim, E.; Jung, Y.; Choi, H.; Yang, J.; Suh, J. S.; Huh, Y. M.; Kim, K.; Haam, S. Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 2010, 31, 4592–4599.CrossRefGoogle Scholar
  31. [31]
    Polak, U.; Hirsch, C.; Ku, S.; Gottesfeld, J.; Dent, S. Y.; Napierala, M. Selecting and isolating colonies of human induced pluripotent stem cells reprogrammed from adult fibroblasts. J. Vis. Exp. 2012, e3416.Google Scholar
  32. [32]
    Larsson, H. M.; Lee, S. T.; Roccio, M.; Velluto, D.; Lutolf, M. P.; Frey, P.; Hubbell, J. A. Sorting live stem cells based on Sox2 mRNA expression. PLoS One 2012, 7, e49874.CrossRefGoogle Scholar
  33. [33]
    Kim, J. K.; Choi, K. J.; Lee, M.; Jo, M. H.; Kim, S. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 2012, 33, 207–217.CrossRefGoogle Scholar
  34. [34]
    May, P.; Liao, W.; Wu, Y.; Shuai, B.; McCombie, W. R.; Zhang, M. Q.; Liu, Q. A. The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat. Commun. 2013, 4, 2145.CrossRefGoogle Scholar
  35. [35]
    Drummond, M. J.; McCarthy, J. J.; Fry, C. S.; Esser, K. A.; Rasmussen, B. B. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am. J. Physiol. Endocrinol. Metab. 2008, 295, e1333–E1340.CrossRefGoogle Scholar
  36. [36]
    Kingham, E.; Oreffo, R. O. C. Embryonic and induced pluripotent stem cells: Understanding, creating, and exploiting the nano-niche for regenerative medicine. ACS Nano 2013, 7, 1867–1881.CrossRefGoogle Scholar
  37. [37]
    Hakim, F.; Kaitsuka, T.; Raeed, J. M.; Wei, F. Y.; Shiraki, N.; Akagi, T.; Yokota, T.; Kume, S.; Tomizawa, K. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulinproducing cells. J. Biol. Chem. 2014, 289, 9623–9638.CrossRefGoogle Scholar
  38. [38]
    Hooten, N. N.; Fitzpatrick, M.; Wood, W. H., 3rd; De, S.; Ejiogu, N.; Zhang, Y. Q.; Mattison, J. A.; Becker, K. G.; Zonderman, A. B.; Evans, M. K. Age-related changes in microRNA levels in serum. Aging 2013, 5, 725–740.CrossRefGoogle Scholar
  39. [39]
    Meaking, W. S.; Edgerton, J.; Wharton, C. W.; Meldrum, R. A. Electroporation-induced damage in mammalian cell DNA. Biochim. Biophys. Acta 1995, 1264, 357–362.CrossRefGoogle Scholar
  40. [40]
    Im, G.-I. Effects of wear particles on osteoprogenitor cells. Biomater. Res. 2008, 12, 48–51.Google Scholar
  41. [41]
    Choi, Y.; Kim, H. S.; Woo, J.; Hwang, E. H.; Cho, K. W.; Kim, S.; Moon, W. K. Real-time imaging of the epithelialmesenchymal transition using microRNA-200a sequencebased molecular beacon-conjugated magnetic nanoparticles. PLoS One 2014, 9, e102164.CrossRefGoogle Scholar
  42. [42]
    Park, S.-W.; Jun Koh, Y.; Jeon, J.; Cho, Y. H.; Jang, M. J.; Kang, Y. J.; Kim, M. J.; Choi, C.; Sook Cho, Y.; Chung, H. M. et al. Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways. Blood 2010, 116, 5762–5772.CrossRefGoogle Scholar
  43. [43]
    Wang, K. M.; Tang, Z. W.; Yang, C. J.; Kim, Y.; Fang, X. H.; Li, W.; Wu, Y. R.; Medley, C. D.; Cao, Z. H.; Li, J. et al. Molecular engineering of DNA: Molecular beacons. Angew. Chem., Int. Ed. 2009, 48, 856–870.CrossRefGoogle Scholar
  44. [44]
    Goel, G.; Kumar, A.; Puniya, A. K.; Chen, W.; Singh, K. Molecular beacon: A multitask probe. J. Appl. Microbiol. 2005, 99, 435–442.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Seungmin Han
    • 1
  • Hye Young Son
    • 2
    • 3
  • Byunghoon Kang
    • 1
  • Eunji Jang
    • 2
    • 3
  • Jisun Ki
    • 1
  • Na Geum Lee
    • 4
    • 5
  • Jongjin Park
    • 4
    • 5
  • Moo-Kwang Shin
    • 1
  • Byeonggeol Mun
    • 1
  • Jeong-Ki Min
    • 4
    • 5
    Email author
  • Seungjoo Haam
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.Department of Radiology, College of MedicineYonsei UniversitySeoulRepublic of Korea
  3. 3.Severance Biomedical Science Institute, College of MedicineYonsei UniversitySeoulRepublic of Korea
  4. 4.Biotherapeutics Translational Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
  5. 5.Department of Biomolecular ScienceUniversity of Science & TechnologyDaejeonRepublic of Korea

Personalised recommendations