Nano Research

, Volume 10, Issue 6, pp 2130–2145 | Cite as

Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination

  • Giulia Lucarelli
  • Francesco Di Giacomo
  • Valerio Zardetto
  • Mariadriana Creatore
  • Thomas M. BrownEmail author
Research Article


This is the first report of an investigation on flexible perovskite solar cells for artificial light harvesting by using a white light-emitting diode (LED) lamp as a light source at 200 and 400 lx, values typically found in indoor environments. Flexible cells were developed using either low-temperature sol–gel or atomic-layer-deposited compact layers over conducting polyethylene terephthalate (PET) substrates, together with ultraviolet (UV)-irradiated nanoparticle TiO2 scaffolds, a CH3NH3PbI3–xClx perovskite semiconductor, and a spiro-MeOTAD hole transport layer. By guaranteeing high-quality carrier blocking (via the 10–40 nm-thick compact layer) and injection (via the nanocrystalline scaffold and perovskite layers) behavior, maximum power conversion efficiencies (PCE) and power densities of 10.8% and 7.2 μW·cm–2, respectively, at 200 lx, and 12.1% and 16.0 μW·cm–2, respectively, at 400 lx were achieved. These values are the state-of-the-art, comparable to and even exceeding those of flexible dye-sensitized solar cells under LED lighting, and significantly greater than those for flexible amorphous silicon, which are currently the main flexible photovoltaic technologies commercially considered for indoor applications. Furthermore, there are significant margins of improvement for reaching the best levels of efficiency for rigid glass-based counterparts, which we found was a high of PCE ~24% at 400 lx. With respect to rigid devices, flexibility brings the advantages of being low cost, lightweight, very thin, and conformal, which is especially important for seamless integration in indoor environments.


flexible perovskite solar cells indoor light harvesting atomic layer deposition nanocrystalline scaffolds flexible photovoltaics energy harvesting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thanks are due to Tadeo Pontecorvo and Francesca De Rossi for the indoor set-up and useful discussions. We thank MIUR for PRIN 2012 AQUASOL (2012A4Z2RY) project, “Polo Solare Organico” Regione Lazio for financial support.

Supplementary material

12274_2016_1402_MOESM1_ESM.pdf (1.4 mb)
Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination


  1. [1]
    Matiko, J. W.; Grabham N. J.; Beeby, S. P.; Tudor, M. J. Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 2014, 25, 012002.CrossRefGoogle Scholar
  2. [2]
    Zhan, Y. Q.; Mei, Y. F.; Zheng, L. R. Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C 2014, 2, 1220–1232.CrossRefGoogle Scholar
  3. [3]
    Apostolou, G.; Reinders, A.; Verwaal, M. Comparison of the indoor performance of 12 commercial PV products by a simple model. Energy Sci. Eng. 2016, 4, 69–85.CrossRefGoogle Scholar
  4. [4]
    Reich, N. H.; van Sark, W. G. J. H. M.; Turkenburg, W. C. Charge yield potential of indoor-operated solar cells incorporated into Product Integrated Photovoltaic (PIPV). Renew. Energy 2011, 36, 642–647.CrossRefGoogle Scholar
  5. [5]
    Li, Y.; Grabham, N. J.; Beeby, S. P.; Tudor, M. J. The effect of the type of illumination on the energy harvesting performance of solar cells. Sol. Energy 2015, 111, 21–29.CrossRefGoogle Scholar
  6. [6]
    Curtis, D. Predictions for the contribution of residential lighting to the carbon emissions of the UKto 2050. In EEDAL Conference, Berlin, Germany, 2009.Google Scholar
  7. [7]
    Navigant Consulting, Inc. Energy Savings Forecast of Solid- State Lighting in General Illumination Applications; U.S. Department of Energy: Washington, DC, 2014. https:// sforecast14.pdf (accessed Aug 10, 2016).Google Scholar
  8. [8]
    Reich, N. H.; van Sark, W. G. J. H. M.; Alsema, E. A.; Lof, R. W.; Schropp, R. E. I.; Sinke, W. C.; Turkenburg, W. C. Crystalline silicon cell performance at low light intensities. Sol. Energy Mater. Sol. Cells 2009, 93, 1471–1481.CrossRefGoogle Scholar
  9. [9]
    Sacco, A.; Rolle, L.; Scaltrito, L.; Tresso, E.; Pirri, C. F. Characterization of photovoltaic modules for low-power indoor application. Appl. Energy 2013, 102, 1295–1302.CrossRefGoogle Scholar
  10. [10]
    Mathews, I.; Kelly, G.; King, P. J.; Frizzel, R. GaAs solar cells for indoor light harvesting. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, Colorado, 2014, pp 510–513.CrossRefGoogle Scholar
  11. [11]
    Steim, R.; Ameri, T.; Schilinsky, P.; Waldauf, C.; Dennler, G.; Scharber, M.; Brabec, C. J. Organic photovoltaics for low light applications. Sol. Energy Mater. Sol. Cells 2011, 95, 3256–3261.CrossRefGoogle Scholar
  12. [12]
    DeRossi, F.; Pontecorvo, T.; Brown, T. M. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl. Energy 2015, 156, 413–422.CrossRefGoogle Scholar
  13. [13]
    Chen, C.-Y.; Chang, J.-H.; Chiang, K.-M.; Lin, H.-L.; Hsiao, S.-Y.; Lin, H.-W. Perovskite photovoltaics for dim-light applications. Adv. Funct. Mater. 2015, 25, 7064–7070.CrossRefGoogle Scholar
  14. [14]
    Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.CrossRefGoogle Scholar
  15. [15]
    Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M. Research update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 2016, 4, 091508.CrossRefGoogle Scholar
  16. [16]
    Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.CrossRefGoogle Scholar
  17. [17]
    Di Giacomo, F.; Zardetto, V.; D’Epifanio, A.; Pescetelli, S.; Matteocci, F.; Razza, S.; Di Carlo, A.; Licoccia, S.; Kessels, W. M. M.; Creatore, M. et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 2015, 5, 1401808.CrossRefGoogle Scholar
  18. [18]
    Zardetto, V.; Brown, T. M.; Reale, A.; Di Carlo, A. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. B Polym. Phys. 2011, 49, 638–648.CrossRefGoogle Scholar
  19. [19]
    Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842.CrossRefGoogle Scholar
  20. [20]
    Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E. et al. Lead iodide perovskite sensitized allsolid- state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.Google Scholar
  21. [21]
    Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.CrossRefGoogle Scholar
  22. [22]
    Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Mínguez Espallargas, G.; Grätzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2014, 8, 128–132.CrossRefGoogle Scholar
  23. [23]
    Correa Baena, J. P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Srimath Kandada, A. R.; Zakeeruddin, S. M. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934.CrossRefGoogle Scholar
  24. [24]
    Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa- Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.CrossRefGoogle Scholar
  25. [25]
    Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.CrossRefGoogle Scholar
  26. [26]
    Di Giacomo, F.; Zardetto, V.; Lucarelli, G.; Cinà, L.; Di Carlo, A.; Creatore, M.; Brown, T. M. Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination. Nano Energy 2016, 30, 460–469.CrossRefGoogle Scholar
  27. [27]
    Brown, T. M.; De Rossi, F.; Di Giacomo, F.; Mincuzzi, G.; Zardetto, V.; Reale, A.; Di Carlo, A. Progress in flexible dye solar cell materials, processes and devices. J. Mater. Chem. A 2014, 2, 10788–10817.CrossRefGoogle Scholar
  28. [28]
    DiGiacomo, F.; Fakharuddin, A.; Jose, R.; Brown, T. M. Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 2016, 9, 3007–3035.CrossRefGoogle Scholar
  29. [29]
    Kumar, M. H.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P. P.; Mathews, N. Flexible, lowtemperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 2013, 49, 11089–11091.CrossRefGoogle Scholar
  30. [30]
    Heo, J. H.; Lee, M. H.; Han, H. J.; Patil, B. R.; Yu, J. S.; Im, S. H. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J. Mater. Chem. A 2016, 4, 1572–1578.CrossRefGoogle Scholar
  31. [31]
    Park, M.; Kim, J.-Y.; Son, H. J.; Lee, C.-H.; Jang, S. S.; Ko, M. J. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 2016, 26, 208–215.CrossRefGoogle Scholar
  32. [32]
    Wang, C. L.; Zhao, D. W.; Grice, C. R.; Liao, W. Q.; Yu, Y.; Cimaroli, A.; Shrestha, N.; Roland, P. J.; Chen, J.; Yu, Z. H. et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 12080–12087.CrossRefGoogle Scholar
  33. [33]
    Yang, D.; Yang, R. X.; Zhang, J.; Yang, Z.; Liu, S. Z.; Li, C. High efficency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 2015, 8, 3208–3214.CrossRefGoogle Scholar
  34. [34]
    Qiu, W. M.; Paetzold, U. W.; Gehlhaar, R.; Smirnov, V.; Boyen, H.-G.; Tait, J. G.; Conings, B.; Zhang, W. M.; Nielsen, C. B.; McCulloch, I. et al. An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. J. Mater. Chem. A 2015, 3, 22824–22829.CrossRefGoogle Scholar
  35. [35]
    Yin, X. T.; Chen, P.; Que, M. D.; Xing, Y. L.; Que, W. X.; Niu, C. M.; Shao, J. Y. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano 2016, 10, 3630–3636.CrossRefGoogle Scholar
  36. [36]
    Jo, J. W.; Seo, M.-S.; Park, M.; Kim, J.-Y.; Park, J. S.; Han, I. K.; Ahn, H.; Jung, J. W.; Sohn, B.-H.; Ko, M. J. et al. Improving performance and stability of flexible planarheterojunction perovskite solar cells using polymeric hole-transport material. Adv. Funct. Mater. 2016, 26, 4464–4471.CrossRefGoogle Scholar
  37. [37]
    Conings, B.; Baeten, L.; Jacobs, T.; Dera, R.; D’Haen, J.; Manca, J.; Boyen, H.-G. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells. APL Mater. 2014, 2, 081505.CrossRefGoogle Scholar
  38. [38]
    Zardetto, V.; DiGiacomo, F.; Garcia-Alonso, D.; Keuning, W.; Creatore, M.; Mazzuca, C.; Reale, A.; Di Carlo, A.; Brown, T. M. Fully plastic dye solar cell devices by low-temperature UV-irradiation of both the mesoporous TiO2 photo- and platinized counter-electrodes. Adv. Energy Mater. 2013, 3, 1292–1298.CrossRefGoogle Scholar
  39. [39]
    George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.CrossRefGoogle Scholar
  40. [40]
    Wu, Y. Z.; Yang, X. D.; Chen, H.; Zhang, K.; Qin, C. J.; Liu, J.; Peng, W. Q.; Islam, A.; Bi, E. B.; Ye, F. et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 2014, 7, 052301.CrossRefGoogle Scholar
  41. [41]
    Katoch, A.; Kim, H.; Hwang, T.; Kim, S. S. Preparation of highly stable TiO2 sols and nanocrystalline TiO2 films via a low temperature sol–gel route. J. Sol-Gel Sci. Technol. 2012, 61, 77–82.CrossRefGoogle Scholar
  42. [42]
    Xiao, M. D.; Huang, F. Z.; Huang, W. C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.-B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 2014, 126, 10056–10061.Google Scholar
  43. [43]
    Pascoe, A. R.; Yang, M. J.; Kopidakis, N.; Zhu, K.; Reese, M. O.; Rumbles, G.; Fekete, M.; Duffy, N. W.; Cheng, Y.-B. Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics. Nano Energy 2016, 22, 439–452.CrossRefGoogle Scholar
  44. [44]
    Peng, B.; Jungmann, G.; Jäger, C.; Haarer, D.; Schmidt, H.-W.; Thelakkat, M. Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coord. Chem. Rev. 2004, 248, 1479–1489.CrossRefGoogle Scholar
  45. [45]
    Wang, X. M.; Fang, Y. L.; He, L.; Wang, Q.; Wu, T. Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells. Mater. Sci. Semicond. Process. 2014, 27, 569–576.CrossRefGoogle Scholar
  46. [46]
    Fakharuddin, A.; DiGiacomo, F.; Ahmed, I.; Wali, Q.; Brown, T. M.; Jose, R. Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. J. Power Sources 2015, 283, 61–67.CrossRefGoogle Scholar
  47. [47]
    Fakharuddin, A.; Di Giacomo, F.; Palma, A. L.; Matteocci F.; Ahmed, I.; Razza, S.; D’Epifanio, A.; Licoccia, S.; Ismail, J.; Di Carlo, A. et al. Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules. ACS Nano 2015, 9, 8420–8429.CrossRefGoogle Scholar
  48. [48]
    Kavan, L.; Tétreault, N.; Moehl, T.; Grätzel, M. Electrochemical characterization of TiO2 blocking layers for dyesensitized solar cells. J. Phys. Chem. C 2014, 118, 16408–16418.CrossRefGoogle Scholar
  49. [49]
    Zaban, A.; Greenshtein, M.; Bisquert, J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 2003, 4, 859–864.CrossRefGoogle Scholar
  50. [50]
    Sridhar, N.; Freeman, D. A study of dye sensitized solar cells under indoor and low level outdoor lighting: Comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking. In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition (EUPVSEC2011), Hamburg, Germany, 2011, pp 232–236.Google Scholar
  51. [51]
    De Rossi, F.; Brown, T. M.; Pontecorvo, T. Flexible photovoltaics for light harvesting under LED lighting. In Proceedings of the 15th International Conference on Environment and Electrical Engineering, Rome, Italy, 2015, pp 2100–2103.Google Scholar
  52. [52]
    Mathews, I.; King, P. J.; Stafford, F.; Frizzell, R. Performance of III–V solar cells as indoor light energy harvesters. IEEE J. Photovolt. 2016, 6, 230–235.CrossRefGoogle Scholar
  53. [53]
    Ricoh Company Ltd. Ricoh develops high-performance complete solid-state dye-sensitized solar cell suitable for indoor lighting [Online]. 1.html (accessed May 3, 2016)Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Giulia Lucarelli
    • 1
  • Francesco Di Giacomo
    • 1
    • 2
  • Valerio Zardetto
    • 3
  • Mariadriana Creatore
    • 3
  • Thomas M. Brown
    • 1
    Email author
  1. 1.Centre for Hybrid and Organic Solar Energy (CHOSE), Department of Electronic EngineeringUniversity of Rome Tor VergataRomeItaly
  2. 2.Holst Centre/TNO - SollianceEindhoventhe Netherlands
  3. 3.Department of Applied PhysicsEindhoven University of TechnologyEindhoventhe Netherlands

Personalised recommendations