Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics

Abstract

Organic–inorganic hybrid perovskites attract considerable attention owing to their applications in high-efficiency solar cells and light emission. Compared with three-dimensional perovskites, two-dimensional (2D) layered hybrid perovskites have a higher exciton binding energy and potentially higher light-emission efficiency. The growth of high-quality crystalline 2D perovskites with a well-defined nanoscale morphology is desirable because they can be suitable building blocks for integrated optoelectronics and (nano)photonics. Herein, we report the facile solution growth of single-crystal microplates of 2D perovskites based on a 2-phenylethylammonium (C6H5CH2CH2NH +3 , PEA) cation, (PEA)2PbX4 (X = Br, I), with a well-defined rectangular geometry and nanoscale thickness through a dissolution–recrystallization process. The crystal structures of (PEA)2PbX4 are first confirmed using single-crystal X-ray diffraction. A solution-phase transport-growth process is developed to grow microplates with a typical size of tens of micrometers and thickness of hundreds of nanometers on another clean substrate different from the substrate coated with lead-acetate precursor film. Surface-topography analysis suggests that the formation of the 2D microplates is likely driven by the wedding-cake growth mechanism. Through halide alloying, the photoluminescence emission of (PEA)2Pb(Br,I)4 perovskites with a narrow peak bandwidth is readily tuned from violet (~410 nm) to green (~530 nm).

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.

    Article  Google Scholar 

  2. [2]

    Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402.

    Article  Google Scholar 

  3. [3]

    Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grä tzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  Google Scholar 

  4. [4]

    Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

    Article  Google Scholar 

  5. [5]

    Xing, G. C.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X. F.; Sabba, D.; Grä tzel, M.; Mhaisalkar, S.; Sum, T. C. Lowtemperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480.

    Article  Google Scholar 

  6. [6]

    Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.

    Article  Google Scholar 

  7. [7]

    Zhang, Q.; Ha, S. T.; Liu, X. F.; Sum, T. C.; Xiong, Q. H. Room-temperature near-infrared high-Q perovskite whisperinggallery planar nanolasers. Nano Lett. 2014, 14, 5995–6001.

    Article  Google Scholar 

  8. [8]

    Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q. H. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 2015, 15, 4571–4577.

    Article  Google Scholar 

  9. [9]

    Li, D. H.; Wang, G. M.; Cheng, H. C.; Chen, C. Y.; Wu, H.; Liu, Y.; Huang, Y.; Duan, X. F. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 2016, 7, 11330.

    Article  Google Scholar 

  10. [10]

    Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

    Article  Google Scholar 

  11. [11]

    Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G. J.; Azimi, H.; Brabec, C. J.; Stangl, J.; Kovalenko, M. V. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 2015, 9, 444–449.

    Article  Google Scholar 

  12. [12]

    Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

    Article  Google Scholar 

  13. [13]

    Fu, Y. P.; Zhu, H. M.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X. Y.; Jin, S. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 2016, 16, 1000–1008.

    Article  Google Scholar 

  14. [14]

    Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

    Article  Google Scholar 

  15. [15]

    Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

    Article  Google Scholar 

  16. [16]

    Hong, X.; Ishihara, T.; Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 1992, 45, 6961–6964.

    Article  Google Scholar 

  17. [17]

    Umebayashi, T.; Asai, K.; Kondo, T.; Nakao, A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 2003, 67, 155405.

    Article  Google Scholar 

  18. [18]

    Saba, M.; Quochi, F.; Mura, A.; Bongiovanni, G. Excited state properties of hybrid perovskites. Acc. Chem. Res. 2016, 49, 166–173.

    Article  Google Scholar 

  19. [19]

    Mitzi, D. B.; Prikas, M. T.; Chondroudis, K. Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique. Chem. Mater. 1999, 11, 542–544.

    Article  Google Scholar 

  20. [20]

    Mitzi, D. B. Thin-film deposition of organic-inorganic hybrid materials. Chem. Mater. 2001, 13, 3283–3298.

    Article  Google Scholar 

  21. [21]

    Mitzi, D. B. Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc., Dalton Trans. 2001, 1–12.

    Google Scholar 

  22. [22]

    Cheng, Z. Y.; Lin, J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 2010, 12, 2646–2662.

    Article  Google Scholar 

  23. [23]

    Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Organic–inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 1994, 65, 676–678.

    Article  Google Scholar 

  24. [24]

    Koutselas, I.; Bampoulis, P.; Maratou, E.; Evagelinou, T.; Pagona, G.; Papavassiliou, G. C. Some unconventional organic-inorganic hybrid low-dimensional semiconductors and related light-emitting devices. J. Phys. Chem. C 2011, 115, 8475–8483.

    Article  Google Scholar 

  25. [25]

    Kishimoto, S.; Shibuya, K.; Nishikido, F.; Koshimizu, M.; Haruki, R.; Yoda, Y. Subnanosecond time-resolved X-ray measurements using an organic–inorganic perovskite scintillator. Appl. Phys. Lett. 2008, 93, 261901.

    Article  Google Scholar 

  26. [26]

    Lanty, G.; Lauret, J. S.; Deleporte, E.; Bouchoule, S.; Lafosse, X. UV polaritonic emission from a perovskite-based microcavity. Appl. Phys. Lett. 2008, 93, 081101.

    Google Scholar 

  27. [27]

    Pradeesh, K.; Baumberg, J. J.; Prakash, G. V. Strong exciton–photon coupling in inorganic–organic multiple quantum wells embedded low-Q microcavity. Opt. Express 2009, 17, 22171–22178.

    Article  Google Scholar 

  28. [28]

    Kondo, T.; Azuma, T.; Yuasa, T.; Ito, R. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1998, 105, 253–255.

    Article  Google Scholar 

  29. [29]

    Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 2014, 126, 11414–11417.

    Article  Google Scholar 

  30. [30]

    Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. 2D homologous perovskites as lightabsorbing materials for solar cell applications. J. Am. Chem. Soc. 2015, 137, 7843–7850.

    Article  Google Scholar 

  31. [31]

    Tsai, H.; Nie, W. Y.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. et al. High-efficiency twodimensional ruddlesden-popper perovskite solar cells. Nature 2016, 536, 312–316.

    Article  Google Scholar 

  32. [32]

    Quan, L. N.; Yuan, M. J.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A. et al. Ligand-stabilized reduceddimensionality perovskites. J. Am. Chem. Soc. 2016, 138, 2649–2655.

    Article  Google Scholar 

  33. [33]

    Kitazawa, N.; Enomoto, K.; Aono, M.; Watanabe, Y. Optical properties of (C6H5C2H4NH3)2PbI4-xBrx (x = 0–4) mixed-crystal doped PMMA films. J. Mater. Sci. 2004, 39, 749–751.

    Article  Google Scholar 

  34. [34]

    Zhang, S. J.; Audebert, P.; Wei, Y.; Al Choueiry, A.; Lanty, G.; Bré hier, A.; Galmiche, L.; Clavier, G.; Boissiè re, C.; Lauret, J.-S. et al. Preparations and characterizations of luminescent two dimensional organic–inorganic perovskite semiconductors. Materials 2010, 3, 3385–3406.

    Article  Google Scholar 

  35. [35]

    Kawano, N.; Koshimizu, M.; Sun, Y.; Yahaba, N.; Fujimoto, Y.; Yanagida, T.; Asai, K. Effects of organic moieties on luminescence properties of organic–inorganic layered perovskite-type compounds. J. Phys. Chem. C 2014, 118, 9101–9106.

    Article  Google Scholar 

  36. [36]

    Lanty, G.; Jemli, K.; Wei, Y.; Leymarie, J.; Even, J.; Lauret, J.-S.; Deleporte, E. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic–inorganic perovskite pseudobinary alloys. J. Phys. Chem. Lett. 2014, 5, 3958–3963.

    Article  Google Scholar 

  37. [37]

    Gonzalez-Carrero, S.; Espallargas, G. M.; Galian, R. E.; Pé rez-Prieto, J. Blue-luminescent organic lead bromide perovskites: Highly dispersible and photostable materials. J. Mater. Chem. A 2015, 3, 14039–14045.

    Article  Google Scholar 

  38. [38]

    Yuan, Z.; Shu, Y.; Tian, Y.; Xin, Y.; Ma, B. W. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chem. Commun. 2015, 51, 16385–16388.

    Article  Google Scholar 

  39. [39]

    Liang, D.; Peng, Y. L.; Fu, Y. P.; Shearer, M. J.; Zhang, J. J.; Zhai, J. Y.; Zhang, Y.; Hamers, R. J.; Andrew, T. L.; Jin, S. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 2016, 10, 6897–6904.

    Article  Google Scholar 

  40. [40]

    Byun, J.; Cho, H.; Wolf, C.; Jang, M.; Sadhanala, A.; Friend, R. H.; Yang, H. C.; Lee, T. W. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 2016, 28, 7515–7520.

    Article  Google Scholar 

  41. [41]

    Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

    Article  Google Scholar 

  42. [42]

    de Quilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683–686.

    Article  Google Scholar 

  43. [43]

    Tian, W. M.; Zhao, C. Y.; Leng, J.; Cui, R. R.; Jin, S. Y. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 2015, 137, 12458–12461.

    Article  Google Scholar 

  44. [44]

    Dasgupta, N. P.; Sun, J. W.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H. W.; Yan, R. X.; Yang, P. D. 25th anniversary article: Semiconductor nanowires—Synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137–2184.

    Article  Google Scholar 

  45. [45]

    Kempa, T. J.; Day, R. W.; Kim, S.-K.; Park, H.-G.; Lieber, C. M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 2013, 6, 719–733.

    Article  Google Scholar 

  46. [46]

    Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.

    Article  Google Scholar 

  47. [47]

    Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics 2009, 3, 569–576.

    Article  Google Scholar 

  48. [48]

    Liang, D.; Cabán-Acevedo, M.; Kaiser, N. S.; Jin, S. Gated hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor. Nano Lett. 2014, 14, 6754–6760.

    Article  Google Scholar 

  49. [49]

    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  50. [50]

    Dou, L. T.; Wong, A. B.; Yu, Y.; Lai, M. L.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. A. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 2015, 349, 1518–1521.

    Article  Google Scholar 

  51. [51]

    Wang, K. Y.; Sun, W. Z.; Li, J. K.; Gu, Z. Y.; Xiao, S. M.; Song, Q. H. Unidirectional lasing emissions from CH3NH3PbBr3 perovskite microdisks. ACS Photonics 2016, 3, 1125–1130.

    Article  Google Scholar 

  52. [52]

    Kitazawa, N. Excitons in two-dimensional layered perovskite compounds: (C6H5C2H4NH3)2Pb(Br,I)4 and (C6H5C2H4NH3)2Pb(Cl,Br)4. Mater. Sci. Eng. B 1997, 49, 233–238.

    Article  Google Scholar 

  53. [53]

    Kondo, T.; Iwamoto, S.; Hayase, S.; Tanaka, K.; Ishi, J.; Mizuno, M.; Ema, K.; Ito, R. Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1998, 105, 503–506.

    Article  Google Scholar 

  54. [54]

    Papagiannouli, I.; Maratou, E.; Koutselas, I.; Couris, S. Synthesis and characterization of the nonlinear optical properties of novel hybrid organic–inorganic semiconductor lead iodide quantum wells and dots. J. Phys. Chem. C 2014, 118, 2766–2775.

    Article  Google Scholar 

  55. [55]

    Yaffe, O.; Chernikov, A.; Norman, Z. M.; Zhong, Y.; Velauthapillai, A.; van der Zande, A.; Owen, J. S.; Heinz, T. F. Excitons in ultrathin organic–inorganic perovskite crystals. Phys. Rev. B 2015, 92, 045414.

    Article  Google Scholar 

  56. [56]

    Calabrese, J.; Jones, N. L.; Harlow, R. L.; Herron, N.; Thorn, D. L.; Wang, Y. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328–2330.

    Article  Google Scholar 

  57. [57]

    Shibuya, K.; Koshimizu, M.; Nishikido, F.; Saito, H.; Kishimoto, S. Poly[bis(phenethyl-ammonium) [di-bromidoplumbate(II)]-di-µ-bromido]]. Acta Cryst. Sect. E Struct. Rep. Online 2009, 65, 1323–1324.

    Article  Google Scholar 

  58. [58]

    Fu, Y. P.; Meng, F.; Rowley, M. B.; Thompson, B. J.; Shearer, M. J.; Ma, D. W.; Hamers, R. J.; Wright, J. C.; Jin, S. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 2015, 137, 5810–5818.

    Article  Google Scholar 

  59. [59]

    Meng, F.; Morin, S. A.; Forticaux, A.; Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 2013, 46, 1616–1626.

    Article  Google Scholar 

  60. [60]

    Yin, X.; Shi, J.; Niu, X. B.; Huang, H. C.; Wang, X. D. Wedding cake growth mechanism in one-dimensional and two-dimensional nanostructure evolution. Nano Lett. 2015, 15, 7766–7772.

    Article  Google Scholar 

  61. [61]

    Forticaux, A.; Dang, L. N.; Liang, H. F.; Jin, S. Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations. Nano Lett. 2015, 15, 3403–3409.

    Article  Google Scholar 

  62. [62]

    Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 2015, 137, 2089–2096.

    Article  Google Scholar 

  63. [63]

    Wu, X. X.; Trinh, M. T.; Zhu, X. Y. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells. J. Phys. Chem. C 2015, 119, 14714–14721.

    Article  Google Scholar 

  64. [64]

    Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G. Synthesis, structural, thermal and optical studies of inorganic–organic hybrid semiconductors, R-PbI4. J. Appl. Phys. 2013, 113, 083523.

    Article  Google Scholar 

  65. [65]

    Zhu, H. M.; Miyata, K.; Fu, Y. P.; Wang, J.; Joshi, P. P.; Niesner, D.; Williams, K. W.; Jin, S.; Zhu, X. Y. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 2016, 353, 1409–1413.

    Article  Google Scholar 

  66. [66]

    Xiao, R.; Hou, Y. S.; Fu, Y. P.; Peng, X. Y.; Wang, Q.; Gonzalez, E.; Jin, S.; Yu, D. Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures. Nano Lett. 2016, 16, 7710–7717.

    Article  Google Scholar 

  67. [67]

    Zhu, H. M.; Trinh, M. T.; Wang, J.; Fu, Y. P.; Joshi, P. P.; Miyata, K.; Jin, S.; Zhu, X. Y. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 2017, 29, 1603072.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (No. DE-FG02-09ER46664). D. W. M. also acknowledges financial support from the China Scholarship Council and the Natural Science Foundation of Zhejiang Province of China (No. LY13F040002). L. N. D. also thanks the UW-Madison Advanced Opportunity Fellowship (AOF) and NSF Graduate Research Fellowship for support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Song Jin.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Fu, Y., Dang, L. et al. Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics. Nano Res. 10, 2117–2129 (2017). https://doi.org/10.1007/s12274-016-1401-6

Download citation

Keywords

  • layered lead-halide perovskite
  • phenylethylammonium lead-halide perovskites
  • microplate
  • nanoplate
  • dissolution–recrystallization
  • photoluminescence