Nano Research

, Volume 10, Issue 6, pp 2117–2129 | Cite as

Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics

  • Dewei Ma
  • Yongping Fu
  • Lianna Dang
  • Jianyuan Zhai
  • Ilia A. Guzei
  • Song JinEmail author
Research Article


Organic–inorganic hybrid perovskites attract considerable attention owing to their applications in high-efficiency solar cells and light emission. Compared with three-dimensional perovskites, two-dimensional (2D) layered hybrid perovskites have a higher exciton binding energy and potentially higher light-emission efficiency. The growth of high-quality crystalline 2D perovskites with a well-defined nanoscale morphology is desirable because they can be suitable building blocks for integrated optoelectronics and (nano)photonics. Herein, we report the facile solution growth of single-crystal microplates of 2D perovskites based on a 2-phenylethylammonium (C6H5CH2CH2NH 3 + , PEA) cation, (PEA)2PbX4 (X = Br, I), with a well-defined rectangular geometry and nanoscale thickness through a dissolution–recrystallization process. The crystal structures of (PEA)2PbX4 are first confirmed using single-crystal X-ray diffraction. A solution-phase transport-growth process is developed to grow microplates with a typical size of tens of micrometers and thickness of hundreds of nanometers on another clean substrate different from the substrate coated with lead-acetate precursor film. Surface-topography analysis suggests that the formation of the 2D microplates is likely driven by the wedding-cake growth mechanism. Through halide alloying, the photoluminescence emission of (PEA)2Pb(Br,I)4 perovskites with a narrow peak bandwidth is readily tuned from violet (~410 nm) to green (~530 nm).


layered lead-halide perovskite phenylethylammonium lead-halide perovskites microplate nanoplate dissolution–recrystallization photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (No. DE-FG02-09ER46664). D. W. M. also acknowledges financial support from the China Scholarship Council and the Natural Science Foundation of Zhejiang Province of China (No. LY13F040002). L. N. D. also thanks the UW-Madison Advanced Opportunity Fellowship (AOF) and NSF Graduate Research Fellowship for support.

Supplementary material

12274_2016_1401_MOESM1_ESM.pdf (2.7 mb)
Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics


  1. [1]
    Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.CrossRefGoogle Scholar
  2. [2]
    Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402.CrossRefGoogle Scholar
  3. [3]
    Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grä tzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.CrossRefGoogle Scholar
  4. [4]
    Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.CrossRefGoogle Scholar
  5. [5]
    Xing, G. C.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X. F.; Sabba, D.; Grä tzel, M.; Mhaisalkar, S.; Sum, T. C. Lowtemperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480.CrossRefGoogle Scholar
  6. [6]
    Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.CrossRefGoogle Scholar
  7. [7]
    Zhang, Q.; Ha, S. T.; Liu, X. F.; Sum, T. C.; Xiong, Q. H. Room-temperature near-infrared high-Q perovskite whisperinggallery planar nanolasers. Nano Lett. 2014, 14, 5995–6001.CrossRefGoogle Scholar
  8. [8]
    Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q. H. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 2015, 15, 4571–4577.CrossRefGoogle Scholar
  9. [9]
    Li, D. H.; Wang, G. M.; Cheng, H. C.; Chen, C. Y.; Wu, H.; Liu, Y.; Huang, Y.; Duan, X. F. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 2016, 7, 11330.CrossRefGoogle Scholar
  10. [10]
    Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.CrossRefGoogle Scholar
  11. [11]
    Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G. J.; Azimi, H.; Brabec, C. J.; Stangl, J.; Kovalenko, M. V. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 2015, 9, 444–449.CrossRefGoogle Scholar
  12. [12]
    Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.CrossRefGoogle Scholar
  13. [13]
    Fu, Y. P.; Zhu, H. M.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X. Y.; Jin, S. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 2016, 16, 1000–1008.CrossRefGoogle Scholar
  14. [14]
    Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.CrossRefGoogle Scholar
  15. [15]
    Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.CrossRefGoogle Scholar
  16. [16]
    Hong, X.; Ishihara, T.; Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 1992, 45, 6961–6964.CrossRefGoogle Scholar
  17. [17]
    Umebayashi, T.; Asai, K.; Kondo, T.; Nakao, A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 2003, 67, 155405.CrossRefGoogle Scholar
  18. [18]
    Saba, M.; Quochi, F.; Mura, A.; Bongiovanni, G. Excited state properties of hybrid perovskites. Acc. Chem. Res. 2016, 49, 166–173.CrossRefGoogle Scholar
  19. [19]
    Mitzi, D. B.; Prikas, M. T.; Chondroudis, K. Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique. Chem. Mater. 1999, 11, 542–544.CrossRefGoogle Scholar
  20. [20]
    Mitzi, D. B. Thin-film deposition of organic-inorganic hybrid materials. Chem. Mater. 2001, 13, 3283–3298.CrossRefGoogle Scholar
  21. [21]
    Mitzi, D. B. Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc., Dalton Trans. 2001, 1–12.Google Scholar
  22. [22]
    Cheng, Z. Y.; Lin, J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 2010, 12, 2646–2662.CrossRefGoogle Scholar
  23. [23]
    Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Organic–inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 1994, 65, 676–678.CrossRefGoogle Scholar
  24. [24]
    Koutselas, I.; Bampoulis, P.; Maratou, E.; Evagelinou, T.; Pagona, G.; Papavassiliou, G. C. Some unconventional organic-inorganic hybrid low-dimensional semiconductors and related light-emitting devices. J. Phys. Chem. C 2011, 115, 8475–8483.CrossRefGoogle Scholar
  25. [25]
    Kishimoto, S.; Shibuya, K.; Nishikido, F.; Koshimizu, M.; Haruki, R.; Yoda, Y. Subnanosecond time-resolved X-ray measurements using an organic–inorganic perovskite scintillator. Appl. Phys. Lett. 2008, 93, 261901.CrossRefGoogle Scholar
  26. [26]
    Lanty, G.; Lauret, J. S.; Deleporte, E.; Bouchoule, S.; Lafosse, X. UV polaritonic emission from a perovskite-based microcavity. Appl. Phys. Lett. 2008, 93, 081101.Google Scholar
  27. [27]
    Pradeesh, K.; Baumberg, J. J.; Prakash, G. V. Strong exciton–photon coupling in inorganic–organic multiple quantum wells embedded low-Q microcavity. Opt. Express 2009, 17, 22171–22178.CrossRefGoogle Scholar
  28. [28]
    Kondo, T.; Azuma, T.; Yuasa, T.; Ito, R. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1998, 105, 253–255.CrossRefGoogle Scholar
  29. [29]
    Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 2014, 126, 11414–11417.CrossRefGoogle Scholar
  30. [30]
    Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. 2D homologous perovskites as lightabsorbing materials for solar cell applications. J. Am. Chem. Soc. 2015, 137, 7843–7850.CrossRefGoogle Scholar
  31. [31]
    Tsai, H.; Nie, W. Y.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. et al. High-efficiency twodimensional ruddlesden-popper perovskite solar cells. Nature 2016, 536, 312–316.CrossRefGoogle Scholar
  32. [32]
    Quan, L. N.; Yuan, M. J.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A. et al. Ligand-stabilized reduceddimensionality perovskites. J. Am. Chem. Soc. 2016, 138, 2649–2655.CrossRefGoogle Scholar
  33. [33]
    Kitazawa, N.; Enomoto, K.; Aono, M.; Watanabe, Y. Optical properties of (C6H5C2H4NH3)2PbI4-xBrx (x = 0–4) mixed-crystal doped PMMA films. J. Mater. Sci. 2004, 39, 749–751.CrossRefGoogle Scholar
  34. [34]
    Zhang, S. J.; Audebert, P.; Wei, Y.; Al Choueiry, A.; Lanty, G.; Bré hier, A.; Galmiche, L.; Clavier, G.; Boissiè re, C.; Lauret, J.-S. et al. Preparations and characterizations of luminescent two dimensional organic–inorganic perovskite semiconductors. Materials 2010, 3, 3385–3406.CrossRefGoogle Scholar
  35. [35]
    Kawano, N.; Koshimizu, M.; Sun, Y.; Yahaba, N.; Fujimoto, Y.; Yanagida, T.; Asai, K. Effects of organic moieties on luminescence properties of organic–inorganic layered perovskite-type compounds. J. Phys. Chem. C 2014, 118, 9101–9106.CrossRefGoogle Scholar
  36. [36]
    Lanty, G.; Jemli, K.; Wei, Y.; Leymarie, J.; Even, J.; Lauret, J.-S.; Deleporte, E. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic–inorganic perovskite pseudobinary alloys. J. Phys. Chem. Lett. 2014, 5, 3958–3963.CrossRefGoogle Scholar
  37. [37]
    Gonzalez-Carrero, S.; Espallargas, G. M.; Galian, R. E.; Pé rez-Prieto, J. Blue-luminescent organic lead bromide perovskites: Highly dispersible and photostable materials. J. Mater. Chem. A 2015, 3, 14039–14045.CrossRefGoogle Scholar
  38. [38]
    Yuan, Z.; Shu, Y.; Tian, Y.; Xin, Y.; Ma, B. W. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chem. Commun. 2015, 51, 16385–16388.CrossRefGoogle Scholar
  39. [39]
    Liang, D.; Peng, Y. L.; Fu, Y. P.; Shearer, M. J.; Zhang, J. J.; Zhai, J. Y.; Zhang, Y.; Hamers, R. J.; Andrew, T. L.; Jin, S. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 2016, 10, 6897–6904.CrossRefGoogle Scholar
  40. [40]
    Byun, J.; Cho, H.; Wolf, C.; Jang, M.; Sadhanala, A.; Friend, R. H.; Yang, H. C.; Lee, T. W. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 2016, 28, 7515–7520.CrossRefGoogle Scholar
  41. [41]
    Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.CrossRefGoogle Scholar
  42. [42]
    de Quilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683–686.CrossRefGoogle Scholar
  43. [43]
    Tian, W. M.; Zhao, C. Y.; Leng, J.; Cui, R. R.; Jin, S. Y. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 2015, 137, 12458–12461.CrossRefGoogle Scholar
  44. [44]
    Dasgupta, N. P.; Sun, J. W.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H. W.; Yan, R. X.; Yang, P. D. 25th anniversary article: Semiconductor nanowires—Synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137–2184.CrossRefGoogle Scholar
  45. [45]
    Kempa, T. J.; Day, R. W.; Kim, S.-K.; Park, H.-G.; Lieber, C. M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 2013, 6, 719–733.CrossRefGoogle Scholar
  46. [46]
    Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.CrossRefGoogle Scholar
  47. [47]
    Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics 2009, 3, 569–576.CrossRefGoogle Scholar
  48. [48]
    Liang, D.; Cabán-Acevedo, M.; Kaiser, N. S.; Jin, S. Gated hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor. Nano Lett. 2014, 14, 6754–6760.CrossRefGoogle Scholar
  49. [49]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  50. [50]
    Dou, L. T.; Wong, A. B.; Yu, Y.; Lai, M. L.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. A. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 2015, 349, 1518–1521.CrossRefGoogle Scholar
  51. [51]
    Wang, K. Y.; Sun, W. Z.; Li, J. K.; Gu, Z. Y.; Xiao, S. M.; Song, Q. H. Unidirectional lasing emissions from CH3NH3PbBr3 perovskite microdisks. ACS Photonics 2016, 3, 1125–1130.CrossRefGoogle Scholar
  52. [52]
    Kitazawa, N. Excitons in two-dimensional layered perovskite compounds: (C6H5C2H4NH3)2Pb(Br,I)4 and (C6H5C2H4NH3)2Pb(Cl,Br)4. Mater. Sci. Eng. B 1997, 49, 233–238.CrossRefGoogle Scholar
  53. [53]
    Kondo, T.; Iwamoto, S.; Hayase, S.; Tanaka, K.; Ishi, J.; Mizuno, M.; Ema, K.; Ito, R. Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1998, 105, 503–506.CrossRefGoogle Scholar
  54. [54]
    Papagiannouli, I.; Maratou, E.; Koutselas, I.; Couris, S. Synthesis and characterization of the nonlinear optical properties of novel hybrid organic–inorganic semiconductor lead iodide quantum wells and dots. J. Phys. Chem. C 2014, 118, 2766–2775.CrossRefGoogle Scholar
  55. [55]
    Yaffe, O.; Chernikov, A.; Norman, Z. M.; Zhong, Y.; Velauthapillai, A.; van der Zande, A.; Owen, J. S.; Heinz, T. F. Excitons in ultrathin organic–inorganic perovskite crystals. Phys. Rev. B 2015, 92, 045414.CrossRefGoogle Scholar
  56. [56]
    Calabrese, J.; Jones, N. L.; Harlow, R. L.; Herron, N.; Thorn, D. L.; Wang, Y. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328–2330.CrossRefGoogle Scholar
  57. [57]
    Shibuya, K.; Koshimizu, M.; Nishikido, F.; Saito, H.; Kishimoto, S. Poly[bis(phenethyl-ammonium) [di-bromidoplumbate(II)]-di-µ-bromido]]. Acta Cryst. Sect. E Struct. Rep. Online 2009, 65, 1323–1324.CrossRefGoogle Scholar
  58. [58]
    Fu, Y. P.; Meng, F.; Rowley, M. B.; Thompson, B. J.; Shearer, M. J.; Ma, D. W.; Hamers, R. J.; Wright, J. C.; Jin, S. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 2015, 137, 5810–5818.CrossRefGoogle Scholar
  59. [59]
    Meng, F.; Morin, S. A.; Forticaux, A.; Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 2013, 46, 1616–1626.CrossRefGoogle Scholar
  60. [60]
    Yin, X.; Shi, J.; Niu, X. B.; Huang, H. C.; Wang, X. D. Wedding cake growth mechanism in one-dimensional and two-dimensional nanostructure evolution. Nano Lett. 2015, 15, 7766–7772.CrossRefGoogle Scholar
  61. [61]
    Forticaux, A.; Dang, L. N.; Liang, H. F.; Jin, S. Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations. Nano Lett. 2015, 15, 3403–3409.CrossRefGoogle Scholar
  62. [62]
    Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 2015, 137, 2089–2096.CrossRefGoogle Scholar
  63. [63]
    Wu, X. X.; Trinh, M. T.; Zhu, X. Y. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells. J. Phys. Chem. C 2015, 119, 14714–14721.CrossRefGoogle Scholar
  64. [64]
    Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G. Synthesis, structural, thermal and optical studies of inorganic–organic hybrid semiconductors, R-PbI4. J. Appl. Phys. 2013, 113, 083523.CrossRefGoogle Scholar
  65. [65]
    Zhu, H. M.; Miyata, K.; Fu, Y. P.; Wang, J.; Joshi, P. P.; Niesner, D.; Williams, K. W.; Jin, S.; Zhu, X. Y. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 2016, 353, 1409–1413.CrossRefGoogle Scholar
  66. [66]
    Xiao, R.; Hou, Y. S.; Fu, Y. P.; Peng, X. Y.; Wang, Q.; Gonzalez, E.; Jin, S.; Yu, D. Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures. Nano Lett. 2016, 16, 7710–7717.CrossRefGoogle Scholar
  67. [67]
    Zhu, H. M.; Trinh, M. T.; Wang, J.; Fu, Y. P.; Joshi, P. P.; Miyata, K.; Jin, S.; Zhu, X. Y. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 2017, 29, 1603072.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dewei Ma
    • 1
    • 2
  • Yongping Fu
    • 1
  • Lianna Dang
    • 1
  • Jianyuan Zhai
    • 1
  • Ilia A. Guzei
    • 1
  • Song Jin
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Applied PhysicsZhejiang University of TechnologyHangzhouChina

Personalised recommendations