Nano Research

, Volume 10, Issue 6, pp 2106–2116 | Cite as

Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores

  • Shuai Wang
  • Fei Cheng
  • Peng Zhang
  • Wen-Cui Li
  • An-Hui LuEmail author
Research Article


Carbon nanosheets with a tunable mesopore size, large pore volume, and good electronic conductivity are synthesized via a solution-chemistry approach. In this synthesis, diaminohexane and graphene oxide (GO) are used as the structural directing agents, and a silica colloid is used as a mesopores template. Diaminohexane plays a crucial role in bridging silica colloid particles and GO, as well as initiating the polymerization of benzoxazine on the surfaces of both the GO and silica, resulting in the formation of a hybrid nanosheet polymer. The carbon nanosheets have graphene embedded in them and have several spherical mesopores with a pore volume up to 3.5 cm3·g–1 on their surfaces. These nuerous accessible mesopores in the carbon layers can act as reservoirs to host a high loading of active charge-storage materials with good dispersion and a uniform particle size. Compared with active materials with wide particle-size distributions, the unique proposed configuration with confined and uniform particles exhibits superior electrochemical performance during lithiation and delithiation, especially during long cycles and at high rates.


mesoporous carbon nanosheet energy storage battery LiFePO4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The project was supported by National Natural Science Foundation of China (Nos. 21225312, 21473021 and U1303192).

Supplementary material

12274_2016_1399_MOESM1_ESM.pdf (1.5 mb)
Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores


  1. [1]
    Wang, Y. G.; Wang, Y. R.; Hosono, E.; Wang, K. X.; Zhou, H. S. The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem., Int. Ed. 2008, 47, 7461–7465.CrossRefGoogle Scholar
  2. [2]
    Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.CrossRefGoogle Scholar
  3. [3]
    Tang, Y. P.; Wu, D. Q.; Chen, S.; Zhang, F.; Jia, J. P.; Feng, X. L. Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ. Sci. 2013, 6, 2447–2451.CrossRefGoogle Scholar
  4. [4]
    Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.CrossRefGoogle Scholar
  5. [5]
    Su, Y. Z.; Li, S.; Wu, D. Q.; Zhang, F.; Liang, H. W.; Gao, P. F.; Cheng, C.; Feng, X. L. Two-dimensional carboncoated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 2012, 6, 8349–8356.CrossRefGoogle Scholar
  6. [6]
    Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.CrossRefGoogle Scholar
  7. [7]
    Yang, S.; Yue, W. B.; Zhu, J.; Ren, Y.; Yang, X. J. Graphenebased mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 3570–3576.CrossRefGoogle Scholar
  8. [8]
    Scrosati, B. Recent advances in lithium ion battery materials. Electrochim. Acta 2000, 45, 2461–2466.CrossRefGoogle Scholar
  9. [9]
    Wang, D. H.; Kou, R.; Choi, D.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L. et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 2010, 4, 1587–1595.CrossRefGoogle Scholar
  10. [10]
    Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.CrossRefGoogle Scholar
  11. [11]
    Cheng, F.; Wang, S.; Lu, A. H.; Li, W. C. Immobilization of nanosized LiFePO4 spheres by 3D coralloid carbon structure with large pore volume and thin walls for high power lithium-ion batteries. J. Power Sources 2013, 229, 249–257.CrossRefGoogle Scholar
  12. [12]
    Wei, D. C.; Liu, Y. Q. Controllable synthesis of graphene and its applications. Adv. Mater. 2010, 22, 3225–3241.CrossRefGoogle Scholar
  13. [13]
    Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Lai, Q. X.; Zhang, X. G. Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 1096–1101.CrossRefGoogle Scholar
  14. [14]
    McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’ homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  15. [15]
    Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.CrossRefGoogle Scholar
  16. [16]
    Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.CrossRefGoogle Scholar
  17. [17]
    Zhou, M.; Cai, T. W.; Pu, F.; Chen, H.; Wang, Z.; Zhang, H. Y.; Guan, S. Y. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 3449–3455.CrossRefGoogle Scholar
  18. [18]
    Wang, X.; Cao, X. Q.; Bourgeois, L.; Guan, H.; Chen, S. M.; Zhong, Y. T.; Tang, D. M.; Li, H. Q.; Zhai, T. Y.; Li, L. et al. N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 2012, 22, 2682–2690.Google Scholar
  19. [19]
    Vinayan, B. P.; Ramaprabhu, S. Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications. J. Mater. Chem. A 2013, 1, 3865–3871.CrossRefGoogle Scholar
  20. [20]
    Zhu, J.; Wang, D.; Liu, T.; Guo, C. Preparation of Sn-Cographene composites with superior lithiumstorage capability. Electrochim. Acta 2014, 125, 347–353.CrossRefGoogle Scholar
  21. [21]
    Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909–2914.CrossRefGoogle Scholar
  22. [22]
    Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. Graphenebased nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2, 15–32.CrossRefGoogle Scholar
  23. [23]
    Jin, Z. Y.; Lu, A. H.; Xu, Y. Y.; Zhang, J. T.; Li, W. C. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv. Mater. 2014, 26, 3700–3705.CrossRefGoogle Scholar
  24. [24]
    Hao, G. P.; Jin, Z. Y.; Sun, Q.; Zhang, X. Q.; Zhang, J. T.; Lu, A. H. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties. Energy Environ. Sci. 2013, 6, 3740–3747.CrossRefGoogle Scholar
  25. [25]
    Wei, W.; Liang, H. W.; Parvez, K.; Zhuang, X. D.; Feng, X. L.; Mü llen, K. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 1570–1574.CrossRefGoogle Scholar
  26. [26]
    Hao, G. P.; Lu, A. H.; Dong, W.; Jin, Z. Y.; Zhang, X. Q.; Zhang, J. T.; Li, W. C. Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance. Adv. Energy Mater. 2013, 3, 1421–1427.CrossRefGoogle Scholar
  27. [27]
    Li, M.; Ding, J.; Xue, J. M. Mesoporous carbon decorated graphene as an efficient electrode material for supercapacitors. J. Mater. Chem. A 2013, 1, 7469–7476.CrossRefGoogle Scholar
  28. [28]
    Hou, L. R.; Lian, L.; Li, D. K.; Pang, G.; Li, J. F.; Zhang, X. G.; Xiong, S. L.; Yuan, C. Z. Mesoporous N-containing carbon nanosheets towards high-performance electrochemical capacitors. Carbon 2013, 64, 141–149.CrossRefGoogle Scholar
  29. [29]
    Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524–1530.CrossRefGoogle Scholar
  30. [30]
    Liu, S. H.; Gordiichuk, P.; Wu, Z. S.; Liu, Z. Y.; Wei, W.; Wagner, M.; Mohamed-Noriega, N.; Wu, D. Q.; Mai, Y. Y.; Herrmann, A. et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat. Commun. 2015, 6, 8817.CrossRefGoogle Scholar
  31. [31]
    Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem. Mater. 2009, 21, 5300–5306.CrossRefGoogle Scholar
  32. [32]
    Ou, X. W.; Chen, P. L.; Jiang, L.; Shen, Y. F.; Hu, W. P.; Liu, M. H. p-conjugated molecules crosslinked graphenebased ultrathin films and their tunable performances in organic nanoelectronics. Adv. Funct. Mater. 2014, 24, 543–554.CrossRefGoogle Scholar
  33. [33]
    Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105.CrossRefGoogle Scholar
  34. [34]
    Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.CrossRefGoogle Scholar
  35. [35]
    Che, J. F.; Shen, L. Y.; Xiao, Y. H. A new approach to fabricate graphene nanosheets in organic medium: Combination of reduction and dispersion. J. Mater. Chem. 2010, 20, 1722–1727.CrossRefGoogle Scholar
  36. [36]
    Song, S. G.; Xue, Y. H.; Feng, L. F.; Elbatal, H.; Wang, P. S.; Moorefield, C. N.; Newkome, G. R.; Dai, L. M. Reversible self-assembly of terpyridine-functionalized graphene oxide for energy conversion. Angew. Chem., Int. Ed. 2014, 53, 1415–1419.CrossRefGoogle Scholar
  37. [37]
    Wang, J.; Liu, G. P.; Wang, L. Y.; Li, C. F.; Xu, J.; Sun, D. J. Synergistic stabilization of emulsions by poly (oxypropylene)diamine and Laponite particles. Colloids Surf. A: Physicochem. Eng. Asp. 2010, 353, 117–124.CrossRefGoogle Scholar
  38. [38]
    Wang, S.; Zhang, L.; Han, F.; Li, W. C.; Xu, Y. Y.; Qu, W. H.; Lu, A. H. Diaminohexane-assisted preparation of coral-like, poly(benzoxazine)-based porous carbons for electrochemical energy storage. ACS Appl. Mater. Interfaces 2014, 6, 11101–11109.CrossRefGoogle Scholar
  39. [39]
    Ghosh, N. N.; Kiskan, B.; Yagci, Y. Polybenzoxazines— New high performance thermosetting resins: Synthesis and properties. Prog. Polym. Sci. 2007, 32, 1344–1391.CrossRefGoogle Scholar
  40. [40]
    Yagci, Y.; Kiskan, B.; Ghosh, N. N. Recent advancement on polybenzoxazine—A newly developed high performance thermoset. J. Polym. Sci. A: Polym. Chem. 2009, 47, 5565–5576.CrossRefGoogle Scholar
  41. [41]
    Chernykh, A.; Liu, J. P.; Ishida, H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer 2006, 47, 7664–7669.CrossRefGoogle Scholar
  42. [42]
    Allen, D. J.; Ishida, H. Polymerization of linear aliphatic diamine-based benzoxazine resins under inert and oxidative environments. Polymer 2007, 48, 6763–6772.CrossRefGoogle Scholar
  43. [43]
    Baqar, M.; Agag, T.; Ishida, H.; Qutubuddin, S. Poly (benzoxazine-co-urethane)s: A new concept for phenolic/ urethane copolymers via one-pot method. Polymer 2011, 52, 307–317.CrossRefGoogle Scholar
  44. [44]
    Gao, X. F.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 2010, 114, 832–842.CrossRefGoogle Scholar
  45. [45]
    Xing, Y. T.; He, Y. B.; Li, B. H.; Chu, X. D.; Chen, H. Z.; Ma, J.; Du, H. D.; Kang, F. Y. LiFePO4/C composite with 3D carbon conductive network for rechargeable lithium ion batteries. Electrochim. Acta 2013, 109, 512–518.CrossRefGoogle Scholar
  46. [46]
    Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energystorage devices. Adv. Mater. 2009, 21, 2710–2714.CrossRefGoogle Scholar
  47. [47]
    Hasegawa, G.; Ishihara, Y.; Kanamori, K.; Miyazaki, K.; Yamada, Y.; Nakanishi, K.; Abe, T. Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem. Mater. 2011, 23, 5208–5216.CrossRefGoogle Scholar
  48. [48]
    Vu, A.; Stein, A. Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem. Mater. 2011, 23, 3237–3245.CrossRefGoogle Scholar
  49. [49]
    Zhao, J. Q.; He, J. P.; Zhou, J. H.; Guo, Y. X.; Wang, T.; Wu, S. C.; Ding, X. C.; Huang, R. M.; Xue, H. R. Facile synthesis for LiFePO4 nanospheres in tridimensional porous carbon framework for lithium ion batteries. J. Phys. Chem. C 2011, 115, 2888–2894.CrossRefGoogle Scholar
  50. [50]
    Wu, Y. M.; Wen, Z. H.; Li, J. H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126–1129.CrossRefGoogle Scholar
  51. [51]
    Wu, Y. M.; Wen, Z. H.; Feng, H. B.; Li, J. H. Sucroseassisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes. Chem.—Eur. J. 2013, 19, 5631–5636.CrossRefGoogle Scholar
  52. [52]
    Bi, H.; Huang, F. Q.; Tang, Y. F.; Liu, Z. Q.; Lin, T. Q.; Chen, J.; Zhao, W. Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries. Electrochim. Acta 2013, 88, 414–420.CrossRefGoogle Scholar
  53. [53]
    Zhao, D.; Feng, Y. L.; Wang, Y. G.; Xia, Y. Y. Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim. Acta 2013, 88, 632–638.CrossRefGoogle Scholar
  54. [54]
    Ha, J.; Park, S. K.; Yu, S. H.; Jin, A.; Jang, B.; Bong, S.; Kim, I.; Sung, Y. E.; Piao, Y. Z. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries. Nanoscale 2013, 5, 8647–8655.CrossRefGoogle Scholar
  55. [55]
    Ni, H. F.; Liu, J. K.; Fan, L. Z. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries. Nanoscale 2013, 5, 2164–2168.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shuai Wang
    • 1
  • Fei Cheng
    • 1
  • Peng Zhang
    • 1
  • Wen-Cui Li
    • 1
  • An-Hui Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations