Skip to main content
Log in

Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nanosheets with a tunable mesopore size, large pore volume, and good electronic conductivity are synthesized via a solution-chemistry approach. In this synthesis, diaminohexane and graphene oxide (GO) are used as the structural directing agents, and a silica colloid is used as a mesopores template. Diaminohexane plays a crucial role in bridging silica colloid particles and GO, as well as initiating the polymerization of benzoxazine on the surfaces of both the GO and silica, resulting in the formation of a hybrid nanosheet polymer. The carbon nanosheets have graphene embedded in them and have several spherical mesopores with a pore volume up to 3.5 cm3·g–1 on their surfaces. These nuerous accessible mesopores in the carbon layers can act as reservoirs to host a high loading of active charge-storage materials with good dispersion and a uniform particle size. Compared with active materials with wide particle-size distributions, the unique proposed configuration with confined and uniform particles exhibits superior electrochemical performance during lithiation and delithiation, especially during long cycles and at high rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Y. G.; Wang, Y. R.; Hosono, E.; Wang, K. X.; Zhou, H. S. The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem., Int. Ed. 2008, 47, 7461–7465.

    Article  Google Scholar 

  2. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

    Article  Google Scholar 

  3. Tang, Y. P.; Wu, D. Q.; Chen, S.; Zhang, F.; Jia, J. P.; Feng, X. L. Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ. Sci. 2013, 6, 2447–2451.

    Article  Google Scholar 

  4. Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.

    Article  Google Scholar 

  5. Su, Y. Z.; Li, S.; Wu, D. Q.; Zhang, F.; Liang, H. W.; Gao, P. F.; Cheng, C.; Feng, X. L. Two-dimensional carboncoated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 2012, 6, 8349–8356.

    Article  Google Scholar 

  6. Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  Google Scholar 

  7. Yang, S.; Yue, W. B.; Zhu, J.; Ren, Y.; Yang, X. J. Graphenebased mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 3570–3576.

    Article  Google Scholar 

  8. Scrosati, B. Recent advances in lithium ion battery materials. Electrochim. Acta 2000, 45, 2461–2466.

    Article  Google Scholar 

  9. Wang, D. H.; Kou, R.; Choi, D.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L. et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 2010, 4, 1587–1595.

    Article  Google Scholar 

  10. Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

    Article  Google Scholar 

  11. Cheng, F.; Wang, S.; Lu, A. H.; Li, W. C. Immobilization of nanosized LiFePO4 spheres by 3D coralloid carbon structure with large pore volume and thin walls for high power lithium-ion batteries. J. Power Sources 2013, 229, 249–257.

    Article  Google Scholar 

  12. Wei, D. C.; Liu, Y. Q. Controllable synthesis of graphene and its applications. Adv. Mater. 2010, 22, 3225–3241.

    Article  Google Scholar 

  13. Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Lai, Q. X.; Zhang, X. G. Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 1096–1101.

    Article  Google Scholar 

  14. McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’ homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  Google Scholar 

  15. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  Google Scholar 

  16. Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

    Article  Google Scholar 

  17. Zhou, M.; Cai, T. W.; Pu, F.; Chen, H.; Wang, Z.; Zhang, H. Y.; Guan, S. Y. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 3449–3455.

    Article  Google Scholar 

  18. Wang, X.; Cao, X. Q.; Bourgeois, L.; Guan, H.; Chen, S. M.; Zhong, Y. T.; Tang, D. M.; Li, H. Q.; Zhai, T. Y.; Li, L. et al. N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 2012, 22, 2682–2690.

    Google Scholar 

  19. Vinayan, B. P.; Ramaprabhu, S. Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications. J. Mater. Chem. A 2013, 1, 3865–3871.

    Article  Google Scholar 

  20. Zhu, J.; Wang, D.; Liu, T.; Guo, C. Preparation of Sn-Cographene composites with superior lithiumstorage capability. Electrochim. Acta 2014, 125, 347–353.

    Article  Google Scholar 

  21. Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909–2914.

    Article  Google Scholar 

  22. Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. Graphenebased nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2, 15–32.

    Article  Google Scholar 

  23. Jin, Z. Y.; Lu, A. H.; Xu, Y. Y.; Zhang, J. T.; Li, W. C. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv. Mater. 2014, 26, 3700–3705.

    Article  Google Scholar 

  24. Hao, G. P.; Jin, Z. Y.; Sun, Q.; Zhang, X. Q.; Zhang, J. T.; Lu, A. H. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties. Energy Environ. Sci. 2013, 6, 3740–3747.

    Article  Google Scholar 

  25. Wei, W.; Liang, H. W.; Parvez, K.; Zhuang, X. D.; Feng, X. L.; Mü llen, K. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 1570–1574.

    Article  Google Scholar 

  26. Hao, G. P.; Lu, A. H.; Dong, W.; Jin, Z. Y.; Zhang, X. Q.; Zhang, J. T.; Li, W. C. Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance. Adv. Energy Mater. 2013, 3, 1421–1427.

    Article  Google Scholar 

  27. Li, M.; Ding, J.; Xue, J. M. Mesoporous carbon decorated graphene as an efficient electrode material for supercapacitors. J. Mater. Chem. A 2013, 1, 7469–7476.

    Article  Google Scholar 

  28. Hou, L. R.; Lian, L.; Li, D. K.; Pang, G.; Li, J. F.; Zhang, X. G.; Xiong, S. L.; Yuan, C. Z. Mesoporous N-containing carbon nanosheets towards high-performance electrochemical capacitors. Carbon 2013, 64, 141–149.

    Article  Google Scholar 

  29. Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524–1530.

    Article  Google Scholar 

  30. Liu, S. H.; Gordiichuk, P.; Wu, Z. S.; Liu, Z. Y.; Wei, W.; Wagner, M.; Mohamed-Noriega, N.; Wu, D. Q.; Mai, Y. Y.; Herrmann, A. et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat. Commun. 2015, 6, 8817.

    Article  Google Scholar 

  31. Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem. Mater. 2009, 21, 5300–5306.

    Article  Google Scholar 

  32. Ou, X. W.; Chen, P. L.; Jiang, L.; Shen, Y. F.; Hu, W. P.; Liu, M. H. p-conjugated molecules crosslinked graphenebased ultrathin films and their tunable performances in organic nanoelectronics. Adv. Funct. Mater. 2014, 24, 543–554.

    Article  Google Scholar 

  33. Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105.

    Article  Google Scholar 

  34. Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.

    Article  Google Scholar 

  35. Che, J. F.; Shen, L. Y.; Xiao, Y. H. A new approach to fabricate graphene nanosheets in organic medium: Combination of reduction and dispersion. J. Mater. Chem. 2010, 20, 1722–1727.

    Article  Google Scholar 

  36. Song, S. G.; Xue, Y. H.; Feng, L. F.; Elbatal, H.; Wang, P. S.; Moorefield, C. N.; Newkome, G. R.; Dai, L. M. Reversible self-assembly of terpyridine-functionalized graphene oxide for energy conversion. Angew. Chem., Int. Ed. 2014, 53, 1415–1419.

    Article  Google Scholar 

  37. Wang, J.; Liu, G. P.; Wang, L. Y.; Li, C. F.; Xu, J.; Sun, D. J. Synergistic stabilization of emulsions by poly (oxypropylene)diamine and Laponite particles. Colloids Surf. A: Physicochem. Eng. Asp. 2010, 353, 117–124.

    Article  Google Scholar 

  38. Wang, S.; Zhang, L.; Han, F.; Li, W. C.; Xu, Y. Y.; Qu, W. H.; Lu, A. H. Diaminohexane-assisted preparation of coral-like, poly(benzoxazine)-based porous carbons for electrochemical energy storage. ACS Appl. Mater. Interfaces 2014, 6, 11101–11109.

    Article  Google Scholar 

  39. Ghosh, N. N.; Kiskan, B.; Yagci, Y. Polybenzoxazines— New high performance thermosetting resins: Synthesis and properties. Prog. Polym. Sci. 2007, 32, 1344–1391.

    Article  Google Scholar 

  40. Yagci, Y.; Kiskan, B.; Ghosh, N. N. Recent advancement on polybenzoxazine—A newly developed high performance thermoset. J. Polym. Sci. A: Polym. Chem. 2009, 47, 5565–5576.

    Article  Google Scholar 

  41. Chernykh, A.; Liu, J. P.; Ishida, H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer 2006, 47, 7664–7669.

    Article  Google Scholar 

  42. Allen, D. J.; Ishida, H. Polymerization of linear aliphatic diamine-based benzoxazine resins under inert and oxidative environments. Polymer 2007, 48, 6763–6772.

    Article  Google Scholar 

  43. Baqar, M.; Agag, T.; Ishida, H.; Qutubuddin, S. Poly (benzoxazine-co-urethane)s: A new concept for phenolic/ urethane copolymers via one-pot method. Polymer 2011, 52, 307–317.

    Article  Google Scholar 

  44. Gao, X. F.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 2010, 114, 832–842.

    Article  Google Scholar 

  45. Xing, Y. T.; He, Y. B.; Li, B. H.; Chu, X. D.; Chen, H. Z.; Ma, J.; Du, H. D.; Kang, F. Y. LiFePO4/C composite with 3D carbon conductive network for rechargeable lithium ion batteries. Electrochim. Acta 2013, 109, 512–518.

    Article  Google Scholar 

  46. Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energystorage devices. Adv. Mater. 2009, 21, 2710–2714.

    Article  Google Scholar 

  47. Hasegawa, G.; Ishihara, Y.; Kanamori, K.; Miyazaki, K.; Yamada, Y.; Nakanishi, K.; Abe, T. Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem. Mater. 2011, 23, 5208–5216.

    Article  Google Scholar 

  48. Vu, A.; Stein, A. Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem. Mater. 2011, 23, 3237–3245.

    Article  Google Scholar 

  49. Zhao, J. Q.; He, J. P.; Zhou, J. H.; Guo, Y. X.; Wang, T.; Wu, S. C.; Ding, X. C.; Huang, R. M.; Xue, H. R. Facile synthesis for LiFePO4 nanospheres in tridimensional porous carbon framework for lithium ion batteries. J. Phys. Chem. C 2011, 115, 2888–2894.

    Article  Google Scholar 

  50. Wu, Y. M.; Wen, Z. H.; Li, J. H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126–1129.

    Article  Google Scholar 

  51. Wu, Y. M.; Wen, Z. H.; Feng, H. B.; Li, J. H. Sucroseassisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes. Chem.—Eur. J. 2013, 19, 5631–5636.

    Article  Google Scholar 

  52. Bi, H.; Huang, F. Q.; Tang, Y. F.; Liu, Z. Q.; Lin, T. Q.; Chen, J.; Zhao, W. Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries. Electrochim. Acta 2013, 88, 414–420.

    Article  Google Scholar 

  53. Zhao, D.; Feng, Y. L.; Wang, Y. G.; Xia, Y. Y. Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim. Acta 2013, 88, 632–638.

    Article  Google Scholar 

  54. Ha, J.; Park, S. K.; Yu, S. H.; Jin, A.; Jang, B.; Bong, S.; Kim, I.; Sung, Y. E.; Piao, Y. Z. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries. Nanoscale 2013, 5, 8647–8655.

    Article  Google Scholar 

  55. Ni, H. F.; Liu, J. K.; Fan, L. Z. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries. Nanoscale 2013, 5, 2164–2168.

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by National Natural Science Foundation of China (Nos. 21225312, 21473021 and U1303192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Hui Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Cheng, F., Zhang, P. et al. Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores. Nano Res. 10, 2106–2116 (2017). https://doi.org/10.1007/s12274-016-1399-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1399-9

Keywords

Navigation