Advertisement

Nano Research

, Volume 10, Issue 6, pp 2083–2095 | Cite as

Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode

  • A.-Young Kim
  • Min Kyu Kim
  • Ji Young Kim
  • Yuren Wen
  • Lin Gu
  • Van-Duong Dao
  • Ho-Suk Choi
  • Dongjin Byun
  • Joong Kee LeeEmail author
Research Article

Abstract

Lithium-sulfur battery has become one of the most promising candidates for next generation batteries, and it is still restricted due to the low sulfur conductivity, large volume expansion and severe polysulfide shuttling. Herein, we present a novel hybrid electrode with a ternary nanomaterial based on sulfur-impregnated multiwalled carbon nanotubes filled with ordered tin-monoxide nanoparticles (MWCNT-SnO/S). Using a dry plasma reduction method, a mechanically robust material is prepared as a cathode host material for lithium-sulfur batteries. The MWCNT-SnO/S electrode exhibits high conductivity, good ability to capture polysulfides, and small volume change during a repeated charge–discharge process. In situ transmission electron microscopy and ultraviolet–visible absorption results indicate that the MWCNT-SnO host efficiently suppresses volume expansion during lithiation and reduces polysulfide dissolution into the electrolyte. Furthermore, the ordered SnO nanoparticles in the MWCNTs facilitate fast ion/electron transfer during the redox reactions by acting as connective links between the walls of the MWCNTs. The MWCNT-SnO/S cathode with a high sulfur content of 70 wt.% exhibits an initial discharge capacity of 1,682.4 mAh·g–1 at 167.5 mA·g–1 (0.1 C rate) and retains a capacity of 530.1 mAh·g–1 at 0.5 C after 1,000 cycles with nearly 100% Coulombic efficiency. Furthermore, the electrode exhibits the high capacity even at a high current rate of 20 C.

Keywords

hybrid nanomaterial multiwalled carbon nanotube (MWCNT) ordered tin monoxide cathode high loading lithium-sulfur battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by KIST institutional program (No. 2E27061). This work was also supported by research grants of NRF funded by the National Research Foundation under the Ministry of Science, ICT & Future, Republic of Korea (No. NRF-2015H1D3A1036078).

Supplementary material

12274_2016_1397_MOESM1_ESM.pdf (2.3 mb)
Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode

References

  1. [1]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  2. [2]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  3. [3]
    Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.CrossRefGoogle Scholar
  4. [4]
    Yamin, H.; Gorenshtein, A.; Penciner, J.; Sternberg, Y.; Peled, E. Lithium sulfur battery: Oxidation/reduction mechanisms of polysulfides in THF solutions. J. Electrochem. Soc. 1988, 135, 1045–1048.CrossRefGoogle Scholar
  5. [5]
    Peled, E.; Sternberg, Y.; Gorenshtein, A.; Lavi, Y. Lithiumsulfur battery: Evaluation of dioxolane-based electrolytes. J. Electrochem. Soc. 1989, 136, 1621–1625.CrossRefGoogle Scholar
  6. [6]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  7. [7]
    Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.CrossRefGoogle Scholar
  8. [8]
    Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295–9303.CrossRefGoogle Scholar
  9. [9]
    Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithiumsulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.CrossRefGoogle Scholar
  10. [10]
    Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.Google Scholar
  11. [11]
    Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbonnanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105–6112.CrossRefGoogle Scholar
  12. [12]
    Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.CrossRefGoogle Scholar
  13. [13]
    Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruna, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.CrossRefGoogle Scholar
  14. [14]
    Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopaminecoated, nitrogen-doped, hollow carbon-sulfur double-layered core–shell structure for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5250–5256.CrossRefGoogle Scholar
  15. [15]
    Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.CrossRefGoogle Scholar
  16. [16]
    Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.CrossRefGoogle Scholar
  17. [17]
    Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.CrossRefGoogle Scholar
  18. [18]
    Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.CrossRefGoogle Scholar
  19. [19]
    Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surfaceenhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.CrossRefGoogle Scholar
  20. [20]
    Han, X. G.; Xu, Y. H.; Chen, X. Y.; Chen, Y.-C.; Weadock, N.; Wan, J. Y.; Zhu, H. L.; Liu, Y. L.; Li, H. Q.; Rubloff, G. et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy 2013, 2, 1197–1206.CrossRefGoogle Scholar
  21. [21]
    Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithiumsulfur batteries. Nat. Commun. 2015, 6, 5682.CrossRefGoogle Scholar
  22. [22]
    Hart, C. J.; Cuisinier, M.; Liang, X.; Kundu, D.; Garsuch, A.; Nazar, L. F. Rational design of sulphur host materials for Li-S batteries: Correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem. Commun. 2015, 51, 2308–2311.CrossRefGoogle Scholar
  23. [23]
    Zhou, G. M.; Zhao, Y. B.; Zu, C. X.; Manthiram, A. Freestanding TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 2015, 12, 240–249.CrossRefGoogle Scholar
  24. [24]
    Hwang, J.-Y.; Kim, H. M.; Lee, S.-K.; Lee, J.-H.; Abouimrane, A.; Khaleel, M. A.; Belharouak, I.; Manthiram, A.; Sun, Y.-K. High-energy, high-rate, lithium–sulfur batteries: Synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv. Energy Mater. 2016, 6, 1501480.CrossRefGoogle Scholar
  25. [25]
    Campbell, B.; Bell, J.; Hosseini Bay, H.; Favors, Z.; Ionescu, R.; Ozkan, C. S.; Ozkan, M. SiO2-coated sulfur particles with mildly reduced graphene oxide as a cathode material for lithium-sulfur batteries. Nanoscale 2015, 7, 7051–7055.CrossRefGoogle Scholar
  26. [26]
    Baba, K.; Kaneko, T.; Hatakeyama, R.; Motomiya, K.; Tohji, K. Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields. Chem. Commun. 2010, 46, 255–257.CrossRefGoogle Scholar
  27. [27]
    Tohji, K.; Goto, T.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ohsuna, T. et al. Purifying single-walled nanotubes. Nature 1996, 383, 679.CrossRefGoogle Scholar
  28. [28]
    Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993, 362, 522–525.CrossRefGoogle Scholar
  29. [29]
    Dao, V. D.; Choi, H. S. Dry plasma synthesis of a MWNT-Pt nanohybrid as an efficient and low-cost counter electrode material for dye-sensitized solar cells. Chem. Commun. 2013, 49, 8910–8912.CrossRefGoogle Scholar
  30. [30]
    Seri-Levy, A.; Avnir, D. The Brunauer–Emmett–Teller equation and the effects of lateral interactions. A simulation study. Langmuir 1993, 9, 2523–2529.Google Scholar
  31. [31]
    Kruk, M.; Jaroniec, M.; Sayari, A. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 1997, 13, 6267–6273.CrossRefGoogle Scholar
  32. [32]
    Hu, R. Z.; Sun, W.; Liu, H.; Zeng, M. Q.; Zhu, M. The fast filling of nano-SnO2 in CNTs by vacuum absorption: A new approach to realize cyclic durable anodes for lithium ion batteries. Nanoscale 2013, 5, 11971–11979.CrossRefGoogle Scholar
  33. [33]
    Hartley, P. A.; Parfitt, G. D.; Pollack, L. B. The role of the van der Waals force in the agglomeration of powders containing submicron particles. Powder Technol. 1985, 42, 35–46.CrossRefGoogle Scholar
  34. [34]
    Li, Z. Q.; Li, B.; Yin, L. W.; Qi, Y. X. Prussion bluesupported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 8098–8107.CrossRefGoogle Scholar
  35. [35]
    He, G.; Ji, X. L.; Nazar, L. High “C” rate Li-S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.CrossRefGoogle Scholar
  36. [36]
    Xu, G. Y.; Ding, B.; Shen, L. F.; Nie, P.; Han, J. P.; Zhang, X. G. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A 2013, 1, 4490–4496.CrossRefGoogle Scholar
  37. [37]
    Zhang, Q. L.; Wang, W. J.; Li, J. L.; Zhu, J. J.; Wang, L. J.; Zhu, M. F.; Jiang, W. Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites. J. Mater. Chem. A 2013, 1, 12109–12114.CrossRefGoogle Scholar
  38. [38]
    Jin, Y. H.; Min, K. M.; Seo, S. D.; Shim, H. W.; Kim, D. W. Enhanced Li storage capacity in 3 nm diameter SnO2 nanocrystals firmly anchored on multiwalled carbon nanotubes. J. Phys. Chem. C 2011, 115, 22062–22067.CrossRefGoogle Scholar
  39. [39]
    Zheng, S. Y.; Han, P.; Han, Z.; Zhang, H. J.; Tang, Z. H.; Yang, J. H. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery. Sci. Rep. 2014, 4, 4842.CrossRefGoogle Scholar
  40. [40]
    Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 2013, 4, 2985.Google Scholar
  41. [41]
    Lu, S. T.; Cheng, Y. W.; Wu, X. H.; Liu, J. Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett. 2013, 13, 2485–2489.CrossRefGoogle Scholar
  42. [42]
    Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.CrossRefGoogle Scholar
  43. [43]
    Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/ sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.CrossRefGoogle Scholar
  44. [44]
    Li, H.; Sun, M. Q.; Zhang, T.; Fang, Y. Q.; Wang, G. C. Improving the performance of PEDOT-PSS coated sulfur@activated porous graphene composite cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 18345–18352.CrossRefGoogle Scholar
  45. [45]
    Wu, F.; Ye, Y. S.; Chen, R. J.; Qian, J.; Zhao, T.; Li, L.; Li, W. H. Systematic effect for an ultra long cycle lithiumsulfur battery. Nano Lett. 2015, 15, 7431–7439.CrossRefGoogle Scholar
  46. [46]
    Wang, R. H.; Xu, C. H.; Sun, J.; Gao, L.; Yao, H. L. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl. Mater. Interfaces 2014, 6, 3427–3436.CrossRefGoogle Scholar
  47. [47]
    Peng, B.; May, J. W.; Gamelin, D. R.; Li, X. S. Effects of crystallographic and shape anisotropies on dopant-carrier exchange interactions in magnetic semiconductor quantum dots. J. Phys. Chem. C 2014, 118, 7630–7636.CrossRefGoogle Scholar
  48. [48]
    Wu, M. F.; Wen, Z. Y.; Liu, Y.; Wang, X. Y.; Huang, L. Z. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources 2011, 196, 8091–8097.CrossRefGoogle Scholar
  49. [49]
    Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N. A.; McDowell, M. T.; Bao, Z. A.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.Google Scholar
  50. [50]
    Zhao, Y.; Li, W. B.; Pan, L. J.; Zhai, D. Y.; Wang, Y.; Li, L. L.; Cheng, W.; Yin, W.; Wang, X. R.; Xu, J. B. et al. ZnO-nanorods/graphene heterostructure: A direct electron transfer glucose biosensor. Sci. Rep. 2016, 6, 32327.CrossRefGoogle Scholar
  51. [51]
    Chen, Y. J.; Zhu, C. L.; Wang, T. H. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology 2006, 17, 3012.CrossRefGoogle Scholar
  52. [52]
    Ma, H.; Zhang, S. Y.; Ji, W. Q.; Tao, Z. L.; Chen, J. α-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 2008, 130, 5361–5367.CrossRefGoogle Scholar
  53. [53]
    Guo, J. C.; Chen, X. L.; Wang, C. S. Carbon scaffold structured silicon anodes for lithium-ion batteries. J. Mater. Chem. 2010, 20, 5035–5040.CrossRefGoogle Scholar
  54. [54]
    Zheng, S. Y.; Wen, Y.; Zhu, Y. J.; Han, Z.; Wang, J.; Yang, J. H.; Wang, C. S. In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes. Adv. Energy Mater. 2014, 4, 1400482.CrossRefGoogle Scholar
  55. [55]
    Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. A polyanilinecoated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.CrossRefGoogle Scholar
  56. [56]
    Wang, W. G.; Wang, X.; Tian, L. Y.; Wang, Y. L.; Ye, S. H. In situ sulfur deposition route to obtain sulfur-carbon composite cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 4316–4323.CrossRefGoogle Scholar
  57. [57]
    Li, Y. J.; Zhan, H.; Liu, S. Q.; Huang, K. L.; Zhou, Y. H. Electrochemical properties of the soluble reduction products in rechargeable Li/S battery. J. Power Sources 2010, 195, 2945–2949.CrossRefGoogle Scholar
  58. [58]
    Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.CrossRefGoogle Scholar
  59. [59]
    Zu, C. X.; Manthiram, A. High-performance Li/dissolved polysulfide batteries with an advanced cathode structure and high sulfur content. Adv. Energy Mater. 2014, 4, 1400897.CrossRefGoogle Scholar
  60. [60]
    Diao, Y.; Xie, K.; Xiong, S. Z.; Hong, X. B. Shuttle phenomenon—The irreversible oxidation mechanism of sulfur active material in Li-S battery. J. Power Sources 2013, 235, 181–186.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A.-Young Kim
    • 1
    • 2
  • Min Kyu Kim
    • 1
  • Ji Young Kim
    • 1
  • Yuren Wen
    • 3
  • Lin Gu
    • 3
  • Van-Duong Dao
    • 4
  • Ho-Suk Choi
    • 4
  • Dongjin Byun
    • 2
  • Joong Kee Lee
    • 1
    Email author
  1. 1.Center for Energy ConvergenceKorea Institute of Science and TechnologySeoulRepublic of Korea
  2. 2.Department of Material Science and EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.Beijing National Laboratory for Condensed Matter Physics Institute of PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Department of Chemical Engineering & Applied ChemistryChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations