Nano Research

, Volume 10, Issue 6, pp 2070–2082 | Cite as

Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence

  • Rui Zou
  • Junjian Huang
  • Junpeng Shi
  • Lin Huang
  • Xuejie Zhang
  • Ka-Leung WongEmail author
  • Hongwu ZhangEmail author
  • Dayong JinEmail author
  • Jing WangEmail author
  • Qiang Su
Research Article


Near-infrared (NIR) persistent-luminescence nanoparticles have emerged as a new class of background-free contrast agents that are promising for in vivo imaging. The next key roadblock is to establish a robust and controllable method for synthesizing monodisperse nanoparticles with high luminescence brightness and long persistent duration. Herein, we report a synthesis strategy involving the coating/etching of the SiO2 shell to obtain a new class of small NIR highly persistent luminescent ZnGa2O4:Cr3+,Sn4+ (ZGOCS) nanoparticles. The optimized ZGOCS nanoparticles have an excellent size distribution of ~15 nm without any agglomeration and an NIR persistent luminescence that is enhanced by a factor of 13.5, owing to the key role of the SiO2 shell in preventing nanoparticle agglomeration after annealing. The ZGOCS nanoparticles have a signal-to-noise ratio ~3 times higher than that of previously reported ZnGa2O4:Cr3+ (ZGC-1) nanoparticles as an NIR persistent-luminescence probe for in vivo bioimaging. Moreover, the persistent-luminescence signal from the ZGOCS nanoparticles can be repeatedly re-charged in situ with external excitation by a white lightemitting diode; thus, the nanoparticles are suitable for long-term in vivo imaging applications. Our study suggests an improved strategy for fabricating novel high-performance optical nanoparticles with good biocompatibility.


core-shell structure in vivo imaging narrow size distribution near-infrared (NIR) persistent luminescence biocompatibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Basic Research Program of China (No. 2014CB643801), the National Natural Science Foundation of China (Nos. 51572302 and 21271191), the Joint Funds of the National Natural Science Foundation of China and Guangdong Province (No. U1301242), Teamwork Projects of Guangdong Natural Science Foundation (No. S2013030012842), Guangdong Science & Technology Project (Nos. 2013B090800019 and 2015B090926011) and Natural Science Foundation of Guangdong Province (No. 2014A030313114).

Supplementary material

12274_2016_1396_MOESM1_ESM.pdf (2.1 mb)
Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence


  1. [1]
    Van den Eeckhout, K.; Poelman, D.; Smet, P. F. Persistent luminescence in non-Eu2+-doped compounds: A review. Materials 2013, 6, 2789–2818.CrossRefGoogle Scholar
  2. [2]
    Hölsä, J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem. Soc. Interface 2009, 18, 42–45.Google Scholar
  3. [3]
    Pan, Z. W.; Lu, Y.-Y.; Liu, F. Sunlight-activated longpersistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63.CrossRefGoogle Scholar
  4. [4]
    le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.-P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.CrossRefGoogle Scholar
  5. [5]
    Debasu, M. L.; Ananias, D.; Pinho, S. L. C.; Geraldes, C. F. G. C.; Carlos, L. D.; Rocha, J. (Gd, Yb, Tb)PO4 up-conversion nanocrystals for bimodal luminescence–MR imaging. Nanoscale 2012, 4, 5154–5162.Google Scholar
  6. [6]
    Maldiney, T.; Bessiè re, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418–426.CrossRefGoogle Scholar
  7. [7]
    Tavares, A. J.; Chong, L.; Petryayeva, E.; Algar, W. R.; Krull, U. J. Quantum dots as contrast agents for in vivo tumor imaging: Progress and issues. Anal. Bioanal. Chem. 2011, 399, 2331–2342.CrossRefGoogle Scholar
  8. [8]
    Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.CrossRefGoogle Scholar
  9. [9]
    Weissleder, R.; Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 2003, 9, 123–128.CrossRefGoogle Scholar
  10. [10]
    Liu, Q.; Sun, Y.; Li, C. G.; Zhou, J.; Li, C. Y.; Yang, T. S.; Zhang, X. Z.; Yi, T.; Wu, D. M.; Li, F. Y. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cationassisted ligand assembly. ACS Nano 2011, 5, 3146–3157.CrossRefGoogle Scholar
  11. [11]
    Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.CrossRefGoogle Scholar
  12. [12]
    Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.CrossRefGoogle Scholar
  13. [13]
    Chan, C. F.; Xie, C.; Tsang, M. K.; Lear, S.; Dai, L. X.; Zhou, Y.; Cicho, J.; Karbowiak, M.; Hreniak, D.; Lan, R. F. The effects of morphology and linker length on the properties of peptide–lanthanide upconversion nanomaterials as G2 phase cell cycle inhibitors. Eur. J. Inorg. Chem. 2015, 2015, 4539–4545.CrossRefGoogle Scholar
  14. [14]
    Gallo, J.; Alam, I. S.; Jin, J. F.; Gu, Y.-J.; Aboagye, E. O.; Wong, W.-T.; Long, N. J. PET imaging with multimodal upconversion nanoparticles. Dalton Trans. 2014, 43, 5535–5545.Google Scholar
  15. [15]
    Chen, C.-W.; Lee, P.-H.; Chan, Y.-C.; Hsiao, M.; Chen, C.-H.; Wu, P. C.; Wu, P. R.; Tsai, D. P.; Tu, D. T.; Chen, X. Y. et al. Plasmon-induced hyperthermia: Hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy. J. Mater. Chem. B 2015, 3, 8293–8302.CrossRefGoogle Scholar
  16. [16]
    Geißler, D.; Charbonnière, L. J.; Ziessel, R. F.; Butlin, N. G.; Löhmannsröben, H. G.; Hildebrandt, N. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew. Chem., Int. Ed. 2010, 49, 1396–1401.CrossRefGoogle Scholar
  17. [17]
    Luo, S. L.; Zhang, E. L.; Su, Y. P.; Cheng, T. M.; Shi, C. M. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127–7138.CrossRefGoogle Scholar
  18. [18]
    Yahia-Ammar, A.; Nonat, A. M.; Boos, A.; Rehspringer, J.-L.; Asfari, Z.; Charbonnière, L. J. Thin-coated water soluble CdTeS alloyed quantum dots as energy donors for highly efficient FRET. Dalton Trans. 2014, 43, 15583–15592.CrossRefGoogle Scholar
  19. [19]
    Dai, W. B.; Lei, Y. F.; Ye, S.; Song, E. H.; Chen, Z.; Zhang, Q. Y. Mesoporous nanoparticles Gd2O3@ mSiO2/ ZnGa2O4:Cr3+,Bi3+ as multifunctional probes for bioimaging. J. Mater. Chem. B 2016, 4, 1842–1852.CrossRefGoogle Scholar
  20. [20]
    Shi, J. P.; Sun, X.; Li, J. L.; Man, H. Z.; Shen, J. S.; Yu, Y. K.; Zhang, H. W. Multifunctional near infrared-emitting longpersistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 2015, 37, 260–270.CrossRefGoogle Scholar
  21. [21]
    Teston, E.; Richard, S.; Maldiney, T.; Lièvre, N.; Wang, G. Y.; Motte, L.; Richard, C.; Lalatonne, Y. Non-aqueous sol–gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chem.—Eur. J. 2015, 21, 7350–7354.CrossRefGoogle Scholar
  22. [22]
    Srivastava, B. B.; Kuang, A. X.; Mao, Y. B. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. 2015, 51, 7372–7375.CrossRefGoogle Scholar
  23. [23]
    Li, Y.; Li, Y. Y.; Chen, R. C.; Sharafudeen, K.; Zhou, S. F.; Gecevicius, M.; Wang, H. H.; Dong, G. P.; Wu, Y. L.; Qin, X. X. et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater. 2015, 7, e180.CrossRefGoogle Scholar
  24. [24]
    Zhuang, Y. X.; Ueda, J.; Tanabe, S. Tunable trap depth in Zn(Ga1-xAlx)2O4:Cr,Bi red persistent phosphors: Considerations of high-temperature persistent luminescence and photostimulated persistent luminescence. J. Mater. Chem. C 2013, 1, 7849–7855.CrossRefGoogle Scholar
  25. [25]
    Maldiney, T.; Richard, C.; Seguin, J.; Wattier, N.; Bessodes, M.; Scherman, D. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 2011, 5, 854–862.CrossRefGoogle Scholar
  26. [26]
    Li, Y.; Gecevicius, M.; Qiu, J. R. Long persistent phosphors—From fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136.CrossRefGoogle Scholar
  27. [27]
    Maldiney, T.; Rémond, M.; Bessodes, M.; Scherman, D.; Richard, C. Controlling aminosilane layer thickness to extend the plasma half-life of stealth persistent luminescence nanoparticles in vivo. J. Mater. Chem. B 2015, 3, 4009–4016.CrossRefGoogle Scholar
  28. [28]
    Abdukayum, A.; Chen, J.-T.; Zhao, Q.; Yan, X.-P. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133.CrossRefGoogle Scholar
  29. [29]
    Wang, F.; Wang, J.; Liu, X. G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem., Int. Ed. 2010, 122, 7618–7622.CrossRefGoogle Scholar
  30. [30]
    Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable nearinfrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.CrossRefGoogle Scholar
  31. [31]
    Zhou, W. L.; Zou, R.; Yang, X. F.; Huang, N. Y.; Huang, J. J.; Liang, H. B.; Wang, J. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core–shell structures via the Kirkendall effect. Nanoscale 2015, 7, 13715–13722.CrossRefGoogle Scholar
  32. [32]
    Pinho, S. L. C.; Pereira, G. A.; Voisin, P.; Kassem, J.; Bouchaud, V.; Etienne, L.; Peters, J. A.; Carlos, L.; Mornet, S.; Geraldes, C. F. et al. Fine tuning of the relaxometry of Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. ACS Nano 2010, 4, 5339–5349.CrossRefGoogle Scholar
  33. [33]
    Gallo, J.; Alam, I. S.; Lavdas, I.; Wylezinska-Arridge, M.; Aboagye, E. O.; Long, N. J. RGD-targeted MnO nanoparticles as T1 contrast agents for cancer imaging—The effect of PEG length in vivo. J. Mater. Chem. B 2014, 2, 868–876.CrossRefGoogle Scholar
  34. [34]
    Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4:Cr3+: A new red long-lasting phosphor with high brightness. Opt. Express 2011, 19, 10131–10137.CrossRefGoogle Scholar
  35. [35]
    Allix, M.; Chenu, S.; Véron, E.; Poumeyrol, T.; Kouadri-Boudjelthia, E. A.; Alahraché, S.; Porcher, F.; Massiot, D.; Fayon, F. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 2013, 25, 1600–1606.CrossRefGoogle Scholar
  36. [36]
    Lee, Y. E.; Norton, D. P.; Budai, J. D. Enhanced photoluminescence in epitaxial ZnGa2O4: Mn thin-film phosphors using pulsed-laser deposition. Appl. Phys. Lett. 1999, 74, 3155–3157.CrossRefGoogle Scholar
  37. [37]
    Kang, B. K.; Lim, H. D.; Mang, S. R.; Song, K. M.; Jung, M. K.; Yoon, D. H. Synthesis and characteristics of ZnGa2O4 hollow nanostructures via carbon@Ga(OH)CO3@Zn(OH)2 by a hydrothermal method. CrystEngComm 2015, 17, 2267–2272.CrossRefGoogle Scholar
  38. [38]
    Bessière, A.; Sharma, S. K.; Basavaraju, N.; Priolkar, K. R.; Binet, L.; Viana, B.; Bos, A. J. J.; Maldiney, T.; Richard, C.; Scherman, D. et al. Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate. Chem. Mater. 2014, 26, 1365–1373.CrossRefGoogle Scholar
  39. [39]
    Maldiney, T.; Lecointre, A.; Viana, B.; Bessière, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 2011, 133, 11810–11815.CrossRefGoogle Scholar
  40. [40]
    Li, Z. J.; Shi, J. P.; Zhang, H. W.; Sun, M. Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo. Opt. Express 2014, 22, 10509–10518.CrossRefGoogle Scholar
  41. [41]
    Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, KLGHEI of Environment and Energy Chemistry, School of ChemistrySun Yat-Sen UniversityGuangzhouChina
  2. 2.Key Lab of Urban Pollutant Conversion, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  3. 3.Department of ChemistryHong Kong Baptist UniversityHong KongChina
  4. 4.Institute for Biomedical Materials and Devices (IBMD), Faculty of ScienceUniversity of TechnologySydneyAustralia

Personalised recommendations