Nano Research

, Volume 10, Issue 6, pp 2056–2069 | Cite as

Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects

  • Shuangfei Cai
  • Xinghang Jia
  • Qiusen Han
  • Xiyun Yan
  • Rong YangEmail author
  • Chen WangEmail author
Research Article


Enhancing the activity of Pt-based nanocatalysts is of great significance yet a challenge for the oxygen reduction reaction (ORR). In this work, a series of porous Pt/Ag nanoparticles (NPs) were fabricated from regular Pt x Ag100–x (x = 25, 50, 75) octahedra by a facile and economical dealloying process. Remarkable enhancement in multiple enzyme-mimic activities related to ORR was observed for the dealloyed Pt50Ag50 (D-Pt50Ag50) NPs. This effect can be attributed to the resulting Pt-rich surface structure, increased surface area, and a synergistic effect of Pt and Ag atoms in the D-Pt50Ag50 NPs. Furthermore, the D-Pt50Ag50 NPs exerted excellent antibacterial effects on two model bacteria (gram-negative Escherichia coli and gram-positive Staphylococcus aureus). The present work represents a significant advance in the exploration of the relation between controllable synthesis of high-quality nanoalloys and their novel catalytic properties for various promising applications, including catalysts, biosensors, and biomedicine.


platinum porous oxygen reduction reaction enzyme mimic antibacterial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Key Research and Development Program from the Ministry of Science and Technology of China (No. 2016YFC0207102) and National Natural Science Foundation of China (Nos. 21501034, 21573050 and 21503053). Financial support from Chinese Academy of Sciences (No. XDA09030303) and CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety was also gratefully acknowledged. We thank associate Prof. Xun Hong from Center of Advanced Nanocatalysis in University of Science and Technology of China (USTC) for constructive discussion. We also thank Dr. Haijun Yang and Yayun Chen from Analysis Center of Department of Chemistry at Tsinghua University for help with ESR study. This work made use of the resources of the Beijing National Center for Electron Microscopy at Tsinghua University.

Supplementary material

12274_2016_1395_MOESM1_ESM.pdf (2.8 mb)
Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects


  1. [1]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar
  2. [2]
    Cui, C.-H.; Li, H.-H.; Yu, J.-W.; Gao, M.-R.; Yu, S.-H. Ternary heterostructured nanoparticle tubes: A dual catalyst and its synergistic enhancement effects for O2/H2O2 reduction. Angew. Chem., Int. Ed. 2010, 49, 9149–9152.CrossRefGoogle Scholar
  3. [3]
    Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.CrossRefGoogle Scholar
  4. [4]
    Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.CrossRefGoogle Scholar
  5. [5]
    Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.CrossRefGoogle Scholar
  6. [6]
    Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 2007, 46, 249–262.CrossRefGoogle Scholar
  7. [7]
    Sasaki, K.; Adzic, R. R. Monolayer-level Ru- and NbO2- supported platinum electrocatalysts for methanol oxidation. J. Electrochem. Soc. 2008, 155, B180–B186.CrossRefGoogle Scholar
  8. [8]
    Sasaki, K.; Zhang, L.; Adzic, R. R. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys. Chem. Chem. Phys. 2008, 10, 159–167.CrossRefGoogle Scholar
  9. [9]
    Stamenkovic, V.; Markovic, N. M.; Ross, P. N. Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J. Electroanal. Chem. 2001, 500, 44–51.CrossRefGoogle Scholar
  10. [10]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  11. [11]
    Yano, H.; Kataoka, M.; Yamashita, H.; Uchida, H.; Watanabe, M. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 2007, 23, 6438–6445.CrossRefGoogle Scholar
  12. [12]
    Markovic, N. M.; Ross, P. N., Jr. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229.CrossRefGoogle Scholar
  13. [13]
    Gu, J.; Lan, G. X.; Jiang, Y. Y.; Xu, Y. S.; Zhu, W.; Jin, C. H.; Zhang, Y. W. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res. 2015, 8, 1480–1496.CrossRefGoogle Scholar
  14. [14]
    Deogratias, N.; Ji, M. W.; Zhang, Y.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Res. 2015, 8, 271–280.CrossRefGoogle Scholar
  15. [15]
    Mani, P.; Srivastava, R.; Strasser, P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. J. Power Sources 2011, 196, 666–673.CrossRefGoogle Scholar
  16. [16]
    Oezaslan, M.; Strasser, P. Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J. Power Sources 2011, 196, 5240–5249.CrossRefGoogle Scholar
  17. [17]
    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar
  18. [18]
    Cui, C. H.; Li, H.-H.; Liu, X.-J.; Gao, M.-R.; Yu, S.-H. Surface composition and lattice ordering-controlled activity and durability of CuPt electrocatalysts for oxygen reduction reaction. ACS Catal. 2012, 2, 916–924.CrossRefGoogle Scholar
  19. [19]
    Liu, Z. Y.; Xin, H. L.; Yu, Z. Q.; Zhu, Y.; Zhang, J. L.; Mundy, J. A.; Muller, D. A.; Wagner, F. T. Atomic-scale compositional mapping and 3-dimensional electron microscopy of dealloyed PtCo3 catalyst nanoparticles with spongy multicore/ shell structures. J. Electrochem. Soc. 2012, 159, F554–F559.CrossRefGoogle Scholar
  20. [20]
    He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494–1497.CrossRefGoogle Scholar
  21. [21]
    Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 3465–3468.CrossRefGoogle Scholar
  22. [22]
    Wang, D. L.; Yu, Y. C.; Xin, H. L.; Hovden, R.; Ercius, P.; Mundy, J. A.; Chen, H.; Richard, J. H.; Muller, D. A.; DiSalvo, F. J. et al. Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 2012, 12, 5230–5238.CrossRefGoogle Scholar
  23. [23]
    Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.CrossRefGoogle Scholar
  24. [24]
    Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.CrossRefGoogle Scholar
  25. [25]
    Wang, Y.; Wan, D. H.; Xie, S. F.; Xia, X. H.; Huang, C. Z.; Xia, Y. N. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano 2013, 7, 4586–4594.CrossRefGoogle Scholar
  26. [26]
    Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their selfassembled structures. Chem. Mater. 2008, 20, 7570–7574.CrossRefGoogle Scholar
  27. [27]
    Zhu, E. B.; Li, Y. J.; Chiu, C.-Y.; Huang, X. Q.; Li, M. F.; Zhao, Z. P.; Liu, Y.; Duan, X. F.; Huang, Y. In situ development of highly concave and composition-confined PtNi octahedral with high oxygen reduction reaction activity and durability. Nano Res. 2016, 9, 149–157.CrossRefGoogle Scholar
  28. [28]
    Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.CrossRefGoogle Scholar
  29. [29]
    Polarz, S.; Smarsly, B. Nanoporous materials. J. Nanosci. Nanotechnol. 2002, 2, 581–612.CrossRefGoogle Scholar
  30. [30]
    Yang, H. C.; Hu, F.; Zhang, Y. J.; Shi, L. Y.; Wang, Q. B. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 2016, 9, 207–213.CrossRefGoogle Scholar
  31. [31]
    Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res. 2015, 8, 576–583.CrossRefGoogle Scholar
  32. [32]
    Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C.-Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction catalyst. Adv. Mater. 2013, 25, 2974–2979.CrossRefGoogle Scholar
  33. [33]
    Zhou, B. B.; Sun, Z. F.; Li, D.; Zhang, T.; Deng, L.; Liu, Y.-N. Platinum nanostructures via self-assembly of an amyloid-like peptide: A novel electrocatalyst for the oxygen reduction. Nanoscale 2013, 5, 2669–2673.CrossRefGoogle Scholar
  34. [34]
    Yuwen, L.; Xu, F.; Xue, B.; Luo, Z. M.; Zhang, Q.; Bao, B. Q.; Su, S.; Weng, L. X.; Huang, W.; Wang, L. H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014, 6, 5762–5769.CrossRefGoogle Scholar
  35. [35]
    El Mel, A.-A.; Boukli-Hacene, F.; Molina-Luna, L.; Bouts, N.; Chauvin, A.; Thiry, D.; Gautron, E.; Gautier, N.; Tessier, P.-Y. Unusual dealloying effect in gold/copper alloy thin films: The role of defects and column boundaries in the formation of nanoporous gold. ACS Appl. Mater. Interfaces 2015, 7, 2310–2321.CrossRefGoogle Scholar
  36. [36]
    Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.CrossRefGoogle Scholar
  37. [37]
    Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.CrossRefGoogle Scholar
  38. [38]
    Cai, S. F.; Qi, C.; Li, Y. D.; Han, Q. S.; Yang, R.; Wang, C. PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 2016, 4, 1869–1877.CrossRefGoogle Scholar
  39. [39]
    Markovic, N. M.; Gasteiger, H. A.; Grgur, B. N.; Ross, P. N. Oxygen reduction reaction on Pt(111): Effects of bromide. J. Electroanal. Chem. 1999, 467, 157–163.CrossRefGoogle Scholar
  40. [40]
    Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.CrossRefGoogle Scholar
  41. [41]
    Cai, L.-T.; Chen, H.-Y. Electrocatalytic reduction of hydrogen peroxide at platinum microparticles dispersed in a poly(o-phenylenediamine) film. Sens. Actuators B 1999, 55, 14–18.CrossRefGoogle Scholar
  42. [42]
    Wang, C.; Chi, M. F.; Wang, G. F.; van der Vliet, D.; Li, D. G.; More, K.; Wang, H.-H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1–x nanoparticles. Adv. Funct. Mater. 2011, 21, 147–152.CrossRefGoogle Scholar
  43. [43]
    Zhang, L.-N.; Deng, H.-H.; Lin, F.-L.; Xu, X.-W.; Weng, S.-H.; Liu, A.-L.; Lin, X.-H.; Xia, X.-H.; Chen, W. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal. Chem. 2014, 86, 2711–2718.CrossRefGoogle Scholar
  44. [44]
    Su, L.; Feng, J.; Zhou, X. M.; Ren, C. L.; Li, H. H.; Chen, X. G. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 2012, 84, 5753–5758.CrossRefGoogle Scholar
  45. [45]
    Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.CrossRefGoogle Scholar
  46. [46]
    Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.CrossRefGoogle Scholar
  47. [47]
    Jiao, X.; Song, H. J.; Zhao, H. H.; Bai, W.; Zhang, L. C.; Lv, Y. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 2012, 4, 3261–3267.CrossRefGoogle Scholar
  48. [48]
    Dong, Y. L.; Zhang, H. G.; Rahman, Z. U.; Su, L.; Chen, X. J.; Hu, J.; Chen, X. G. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 2012, 4, 3969–3976.CrossRefGoogle Scholar
  49. [49]
    Dong, Y. M.; Zhang, J. J.; Jiang, P. P.; Wang, G. L.; Wu, X. M.; Zhao, H.; Zhang, C. Superior peroxidase mimetic activity of carbon dots-Pt nanocomposites relies on synergistic effects. New J. Chem. 2015, 39, 4141–4146.CrossRefGoogle Scholar
  50. [50]
    Park, J.-N.; Shon, J. K.; Jin, M. S.; Hwang, S. H.; Park, G. O.; Boo, J.-H.; Han, T. H.; Kim, J. M. Highly ordered mesoporous a-Mn2O3 for catalytic decomposition of H2O2 at low temperatures. Chem. Lett. 2010, 39, 493–495.CrossRefGoogle Scholar
  51. [51]
    Lin, S.-S.; Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environ. Sci. Technol. 1998, 32, 1417–1423.CrossRefGoogle Scholar
  52. [52]
    Kiyonaga, T.; Jin, Q. L.; Kobayashi, H.; Tada, H. Sizedependence of catalytic activity of gold nanoparticles loaded on titanium(IV) dioxide for hydrogen peroxide decomposition. ChemPhysChem 2009, 10, 2935–2938.CrossRefGoogle Scholar
  53. [53]
    Fan, J.; Yin, J.-J.; Ning, B.; Wu, X. C.; Hu, Y.; Ferrari, M.; Anderson, G. J.; Wei, J. Y.; Zhao, Y. L.; Nie, G. J. Direct evidence for catalase and peroxidase activities of ferritinplatinum nanoparticles. Biomaterials 2011, 32, 1611–1618.CrossRefGoogle Scholar
  54. [54]
    Hasnat, M. A.; Rahman, M. M.; Borhanuddin, S. M.; Siddiqua, A.; Bahadur, N. M.; Karim, M. R. Efficient hydrogen peroxide decomposition on bimetallic Pt-Pd surfaces. Catal. Commun. 2010, 12, 286–291.CrossRefGoogle Scholar
  55. [55]
    Prabhuram, J.; Manoharan, R. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. J. Power Sources 1998, 74, 54–61.CrossRefGoogle Scholar
  56. [56]
    Westbroek, P.; Temmerman, E. Mechanism of hydrogen peroxide oxidation reaction at a glassy carbon electrode in alkaline solution. J. Electroanal. Chem. 2000, 482, 40–47.CrossRefGoogle Scholar
  57. [57]
    Matsura, V. A.; Potekhin, V. V.; Platonov, V. V.; Tatsenko, O. M.; Ukraintsev, V. B.; Khokhryakov, K. A. Kinetics of reaction between oxygen and hydrogen in water in the presence of Pd(0)-containing compounds. Russ. J. Gen. Chem. 2003, 73, 1671–1675.CrossRefGoogle Scholar
  58. [58]
    Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.Google Scholar
  59. [59]
    Greeley, J.; Nørskov, J. K.; Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 2002, 53, 319–348.CrossRefGoogle Scholar
  60. [60]
    Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of Platinummonolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed. 2005, 44, 2132–2135.CrossRefGoogle Scholar
  61. [61]
    Lu, Y.; Ye, W. C.; Yang, Q.; Yu, J.; Wang, Q.; Zhou, P. P.; Wang, C. M.; Xue, D. S.; Zhao, S. Q. Three-dimensional hierarchical porous PtCu dendrites: A highly efficient peroxidase nanozyme for colorimetric detection of H2O2. Sens. Actuators B 2016, 230, 721–730.CrossRefGoogle Scholar
  62. [62]
    Zhang, H. J.; Deng, X. G.; Jiao, C. P.; Lu, L. L.; Zhang, S. W. Preparation and catalytic activities for H2O2 decomposition of Rh/Au bimetallic nanoparticles. Mater. Res. Bull. 2016, 79, 29–35.CrossRefGoogle Scholar
  63. [63]
    Xu, G.-R.; Han, S.-H.; Liu, Z.-H.; Chen, Y. The chemical functionalized platinum nanodendrites: The effect of chemical molecular weight on electrocatalytic property. J. Power Sources 2016, 306, 587–592.CrossRefGoogle Scholar
  64. [64]
    Fu, G. T.; Jiang, X.; Ding, L. F.; Tao, L.; Chen, Y.; Tang, Y. W.; Zhou, Y. M.; Wei, S. H.; Lin, J.; Lu, T. L. Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral palladium nanocrystals. Appl. Catal. B: Environ. 2013, 138–139, 167–174.Google Scholar
  65. [65]
    Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.CrossRefGoogle Scholar
  66. [66]
    Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CAS Center for Excellence in Nanoscience, National Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Protein and Peptide Pharmaceutical, National Laboratory of Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations