Advertisement

Nano Research

, Volume 10, Issue 6, pp 2034–2045 | Cite as

Hot-nanoparticle-mediated fusion of selected cells

  • Azra Bahadori
  • Lene B. OddershedeEmail author
  • Poul M. BendixEmail author
Research Article

Abstract

Complete fusion of two selected cells allows for the creation of novel hybrid cells with inherited genetic properties from both original cells. Alternatively, via fusion of a selected cell with a selected vesicle, chemicals or genes can be directly delivered into the cell of interest, to control cellular reactions or gene expression. Here, we demonstrate how to perform an optically controlled fusion of two selected cells or of one cell and one vesicle. Fusion is mediated by laser irradiating plasmonic gold nanoparticles optically trapped between two cells (or a vesicle and a cell) of interest. This hot-particle-mediated fusion causes total mixing of the two cytoplasms and the two cell membranes resulting in formation of a new hybrid cell with an intact cell membrane and enzymatic activity following fusion. Similarly, fusion between a vesicle and a cell results in delivery of the vesicle cargo to the cytoplasm, and after fusion, the cell shows signs of viability. The method is an implementation of targeted drug delivery at the single-cell level and has a great potential for cellular control and design.

Keywords

cell fusion membrane fusion gold nanoparticle plasmonic heating optical trapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge financial support from the Lundbeck Foundation, the Villum Kann Rasmussen Foundation (No. VKR022593), the Danish Council for Independent Research DFF–4181-00196, from the Danish National Research Foundation (No. DNRF116) and from the Novo Nordisk Foundation (No. NNF14OC0011361).

Supplementary material

12274_2016_1392_MOESM1_ESM.pdf (1.6 mb)
Hot-nanoparticle-mediated fusion of selected cells

References

  1. [1]
    Martens, S.; McMahon, H. T. Mechanisms of membrane fusion: Disparate players and common principles. Nat. Rev. Mol. Cell Biol. 2008, 9, 543–556.CrossRefGoogle Scholar
  2. [2]
    Chen, Y. A.; Scheller, R. H. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Biol. 2001, 2, 98–106.CrossRefGoogle Scholar
  3. [3]
    Pérez-Vargas, J.; Krey, T.; Valansi, C.; Avinoam, O.; Haouz, A.; Jamin, M.; Raveh-Barak, H.; Podbilewicz, B.; Rey, F. A. Structural basis of eukaryotic cell-cell fusion. Cell 2014, 157, 407–419.CrossRefGoogle Scholar
  4. [4]
    Brouwer, I.; Giniatullina, A.; Laurens, N.; van Weering, J. R. T.; Bald, D.; Wuite, G. J. L.; Groffen, A. J. Direct quantitative detection of Doc2b-induced hemifusion in optically trapped membranes. Nat. Commun. 2015, 6, 8387.CrossRefGoogle Scholar
  5. [5]
    Weber, T.; Zemelman, B. V.; McNew, J. A.; Westermann, B.; Gmachl, M.; Parlati, F.; Söllner, T. H.; Rothman, J. E. SNAREpins: Minimal machinery for membrane fusion. Cell 1998, 92, 759–772.CrossRefGoogle Scholar
  6. [6]
    Floyd, D. L.; Ragains, J. R.; Skehel, J. J.; Harrison, S. C.; van Oijen, A. M. Single-particle kinetics of influenza virus membrane fusion. Proc. Natl. Acad. Sci. USA 2008, 105, 15382–15387.CrossRefGoogle Scholar
  7. [7]
    Estes, D. J.; Lopez, S. R.; Fuller, A. O.; Mayer, M. Triggering and visualizing the aggregation and fusion of lipid membranes in microfluidic chambers. Biophys. J. 2006, 91, 233–243.CrossRefGoogle Scholar
  8. [8]
    Longo, M. L.; Waring, A. J.; Hammer, D. A. Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: Area expansion and permeation. Biophys. J. 1997, 73, 1430–1439.CrossRefGoogle Scholar
  9. [9]
    Chakraborty, H.; Mondal, S.; Sarkar, M. Membrane fusion: A new function of non steroidal anti-inflammatory drugs. Biophys. Chem. 2008, 137, 28–34.CrossRefGoogle Scholar
  10. [10]
    Ohki, S. Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion. J. Membr. Biol. 1984, 77, 265–275.CrossRefGoogle Scholar
  11. [11]
    Wilschut, J.; Duezguenes, N.; Papahadjopoulos, D. Calcium/ magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. Biochemistry 1981, 20, 3126–3133.CrossRefGoogle Scholar
  12. [12]
    van Lengerich, B.; Rawle, R. J.; Bendix, P. M.; Boxer, S. G. Individual vesicle fusion events mediated by lipid-anchored DNA. Biophys. J. 2013, 105, 409–419.CrossRefGoogle Scholar
  13. [13]
    Rawle, R. J.; van Lengerich, B.; Chung, M.; Bendix, P. M.; Boxer, S. G. Vesicle fusion observed by content transfer across a tethered lipid bilayer. Biophys. J. 2011, 101, L37–L39.CrossRefGoogle Scholar
  14. [14]
    Haluska, C. K.; Riske, K. A.; Marchi-Artzner, V.; Lehn, J. M.; Lipowsky, R.; Dimova, R. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc. Natl. Acad. Sci. USA 2006, 103, 15841–15846.CrossRefGoogle Scholar
  15. [15]
    Saito, A. C.; Ogura, T.; Fujiwara, K.; Murata, S.; Nomura, S.-I. M. Introducing micrometer-sized artificial objects into live cells: A method for cell–giant unilamellar vesicle electrofusion. PLoS One 2014, 9, e106853.CrossRefGoogle Scholar
  16. [16]
    Robinson, T.; Verboket, P. E.; Eyer, K.; Dittrich, P. S. Controllable electrofusion of lipid vesicles: Initiation and analysis of reactions within biomimetic containers. Lab Chip 2014, 14, 2852–2859.CrossRefGoogle Scholar
  17. [17]
    Yeheskely-Hayon, D.; Minai, L.; Golan, L.; Dann, E. J.; Yelin, D. Optically induced cell fusion using bispecific nanoparticles. Small 2013, 9, 3771–3777.CrossRefGoogle Scholar
  18. [18]
    Rørvig-Lund, A.; Bahadori, A.; Semsey, S.; Bendix, P. M.; Oddershede, L. B. Vesicle fusion triggered by optically heated gold nanoparticles. Nano Lett. 2015, 15, 4183–4188.CrossRefGoogle Scholar
  19. [19]
    Bendix, P. M.; Jauffred, L.; Norregaard, K.; Oddershede, L. B. Optical trapping of nanoparticles and quantum dots. IEEE J. Sel. Top. Quant. 2014, 20, 4800112.Google Scholar
  20. [20]
    Richardson, A. C.; Reihani, N.; Oddershede, L. B. Combing confocal microscopy with precise force-scope optical tweezers. In Proceedings of SPIE 6326, Optical Trapping and Optical Micromanipulation III, San Diego, California, USA, 2006.Google Scholar
  21. [21]
    Reihani, S. N. S.; Mir, S. A.; Richardson, A. C.; Oddershede, L. B. Significant improvement of optical traps by tuning standard water immersion objectives. J. Opt. 2011, 13, 105301.CrossRefGoogle Scholar
  22. [22]
    Hansen, P. M.; Bhatia, V. K.; Harrit, N.; Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 2005, 5, 1937–1942.CrossRefGoogle Scholar
  23. [23]
    Bendix, P. M.; Reihani, S. N. S.; Oddershede, L. B. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. ACS Nano 2010, 4, 2256–2262.CrossRefGoogle Scholar
  24. [24]
    Kyrsting, A.; Bendix, P. M.; Stamou, D. G.; Oddershede, L. B. Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett. 2011, 11, 888–892.CrossRefGoogle Scholar
  25. [25]
    Kaneshiro, E. S.; Wyder, M. A.; Wu, Y.-P.; Cushion, M. T. Reliability of calcein acetoxy methyl ester and ethidium homodimer or propidium iodide for viability assessment of microbes. J. Microbiol. Meth. 1993, 17, 1–16.CrossRefGoogle Scholar
  26. [26]
    Gatti, R.; Belletti, S.; Orlandini, G.; Bussolati, O.; Dall'Asta, V.; Gazzola, G. C. Comparison of annexin V and calcein- AM as early vital markers of apoptosis in adherent cells by confocal laser microscopy. J. Histochem. Cytochem. 1998, 46, 895–900.CrossRefGoogle Scholar
  27. [27]
    Stockert, J. C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R. W.; Villanueva, Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796.CrossRefGoogle Scholar
  28. [28]
    Liu, Y.; Peterson, D. A.; Kimura, H.; Schubert, D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem. 1997, 69, 581–593.CrossRefGoogle Scholar
  29. [29]
    Ogle, B. M.; Cascalho, M.; Platt, J. L. Biological implications of cell fusion. Nat. Rev. Mol. Cell Biol. 2005, 6, 567–575.CrossRefGoogle Scholar
  30. [30]
    Gong, J. L.; Nikrui, N.; Chen, D. S.; Koido, S.; Wu, Z. K.; Tanaka, Y.; Cannistra, S.; Avigan, D.; Kufe, D. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J. Immunol. 2000, 165, 1705–1711.CrossRefGoogle Scholar
  31. [31]
    Giordano-Santini, R.; Linton, C.; Hilliard, M. A. Cell-cell fusion in the nervous system: Alternative mechanisms of development, injury, and repair. Semin. Cell Dev. Biol., in press, DOI: 10.1016/j.semcdb.2016.06.019.Google Scholar
  32. [32]
    Vassilopoulos, G.; Wang, P. R.; Russell, D. W. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003, 422, 901–904.CrossRefGoogle Scholar
  33. [33]
    Jang, H. S.; Hong, Y. J.; Choi, H. W.; Song, H.; Byun, S. J.; Uhm, S. J.; Seo, H. G.; Do, J. T. Changes in parthenogenetic imprinting patterns during reprogramming by cell fusion. PLoS One 2016, 11, e0156491.CrossRefGoogle Scholar
  34. [34]
    Bendix, P. M.; Oddershede, L. B. Expanding the optical trapping range of lipid vesicles to the nanoscale. Nano Lett. 2011, 11, 5431–5437.CrossRefGoogle Scholar
  35. [35]
    Oyama, K.; Arai, T.; Isaka, A.; Sekiguchi, T.; Itoh, H.; Seto, Y.; Miyazaki, M.; Itabashi, T.; Ohki, T.; Suzuki, M. et al. Directional bleb formation in spherical cells under temperature gradient. Biophys. J. 2015, 109, 355–364.CrossRefGoogle Scholar
  36. [36]
    Biondi, O.; Motta, S.; Mosesso, P. Low molecular weight polyethylene glycol induces chromosome aberrations in Chinese hamster cells cultured in vitro. Mutagenesis 2002, 17, 261–264.CrossRefGoogle Scholar
  37. [37]
    Baffou, G.; Berto, P.; Bermúdez Ureña, E.; Quidant, R.; Monneret, S.; Polleux, J.; Rigneault, H. Photoinduced heating of nanoparticle arrays. ACS Nano 2013, 7, 6478–6488.CrossRefGoogle Scholar
  38. [38]
    Pott, T.; Bouvrais, H.; Méléard, P. Giant unilamellar vesicle formation under physiologically relevant conditions. Chem. Phys. Lipids 2008, 154, 115–119.CrossRefGoogle Scholar
  39. [39]
    Estes, D. J.; Mayer, M. Giant liposomes in physiological buffer using electroformation in a flow chamber. Biochim. Biophys. Acta 2005, 1712, 152–160.CrossRefGoogle Scholar
  40. [40]
    Montes, L. R.; Alonso, A.; Goñi, F. M.; Bagatolli, L. A. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J. 2007, 93, 3548–3554.CrossRefGoogle Scholar
  41. [41]
    Weinberger, A.; Tsai, F.-C.; Koenderink, G. H.; Schmidt, T. F.; Itri, R.; Meier, W.; Schmatko, T.; Schröder, A.; Marques, C. Gel-assisted formation of giant unilamellar vesicles. Biophys. J. 2013, 105, 154–164.CrossRefGoogle Scholar
  42. [42]
    Luby-Phelps, K. Cytoarchitecture and physical properties of cytoplasm: Volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 2000, 192, 189–221.CrossRefGoogle Scholar
  43. [43]
    Fujiwara, T.; Ritchie, K.; Murakoshi, H.; Jacobson, K.; Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 2002, 157, 1071–1082.CrossRefGoogle Scholar
  44. [44]
    Andersen, T.; Kyrsting, A.; Bendix, P. M. Local and transient permeation events are associated with local melting of giant liposomes. Soft Matter 2014, 10, 4268–4274.CrossRefGoogle Scholar
  45. [45]
    Li, M.; Lohmuller, T.; Feldmann, J. Optical injection of gold nanoparticles into living cells. Nano Lett. 2015, 15, 770–775.CrossRefGoogle Scholar
  46. [46]
    McDougall, C.; Stevenson, D. J.; Brown, C. T. A.; Gunn-Moore, F.; Dholakia, K. Targeted optical injection of gold nanoparticles into single mammalian cells. J. Biophotonics 2009, 2, 736–743.CrossRefGoogle Scholar
  47. [47]
    Andersen, T.; Bahadori, A.; Ott, D.; Kyrsting, A.; Reihani, S. N.; Bendix, P. M. Nanoscale phase behavior on flat and curved membranes. Nanotechnology 2014, 25, 505101.CrossRefGoogle Scholar
  48. [48]
    Pan, J. J.; Heberle, F. A.; Tristram-Nagle, S.; Szymanski, M.; Koepfinger, M.; Katsaras, J.; Kučerka, N. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim. Biophys. Acta 2012, 1818, 2135–2148.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Blegdamsvej 17, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  2. 2.Lundbeck Foundation Center for Biomembranes in NanomedicineUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations