Nano Research

, Volume 10, Issue 6, pp 2021–2033 | Cite as

Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics

  • Tran Quang Trung
  • Le Thai Duy
  • Subramanian Ramasundaram
  • Nae-Eung LeeEmail author
Research Article


Stretchable and conformal humidity sensors that can be attached to the human body for continuously monitoring the humidity of the environment around the human body or the moisture level of the human skin can play an important role in electronic skin and personal healthcare applications. However, most stretchable humidity sensors are based on the geometric engineering of non-stretchable components and only a few detailed studies are available on stretchable humidity sensors under applied mechanical deformations. In this paper, we propose a transparent, stretchable humidity sensor with a simple fabrication process, having intrinsically stretchable components that provide high stretchability, sensitivity, and stability along with fast response and relaxation time. Composed of reduced graphene oxide-polyurethane composites and an elastomeric conductive electrode, this device exhibits impressive response and relaxation time as fast as 3.5 and 7 s, respectively. The responsivity and the response and relaxation time of the device in the presence of humidity remain almost unchanged under stretching up to a strain of 60% and after 10,000 stretching cycles at a 40% strain. Further, these stretchable humidity sensors can be easily and conformally attached to a finger for monitoring the humidity levels of the environment around the human body, wet objects, or human skin.


transparent stretchable humidity sensor reduced graphene oxide wearable electronics body-attachable intrinsically stretchable components 



This research was supported by the Basic Science Research Program (No. 2013R1A2A1A01015232) of the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning.

Supplementary material

12274_2016_1389_MOESM1_ESM.pdf (3.7 mb)
Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics


  1. [1]
    Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.CrossRefGoogle Scholar
  2. [2]
    Dagdeviren, C.; Shi, Y.; Joe, P.; Ghaffari, R.; Balooch, G.; Usgaonkar, K.; Gur, O.; Tran, P. L.; Crosby, J. R.; Meyer, M. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 2015, 14, 728–736.CrossRefGoogle Scholar
  3. [3]
    Choong, C.-L.; Shim, M.-B.; Lee, B.-S.; Jeon, S.; Ko, D.-S.; Kang, T.-H.; Bae, J.; Lee, S. H.; Byun, K.-E.; Im, J. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.CrossRefGoogle Scholar
  4. [4]
    Dagdeviren, C.; Su, Y. W.; Joe, P.; Yona, R.; Liu, Y. H.; Kim, Y.-S.; Huang, Y. A.; Damadoran, A. R.; Xia, J.; Martin, L. W. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496.CrossRefGoogle Scholar
  5. [5]
    Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y. H.; Yu, K. J.; Cheng, H. Y.; Shi, M. X.; Bian, Z. G.; Liu, Z. J.; Kim, Y.-S. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944.CrossRefGoogle Scholar
  6. [6]
    Gao, L.; Zhang, Y. H.; Malyarchuk, V.; Jia, L.; Jang, K.-I.; Chad Webb, R.; Fu, H. R.; Shi, Y.; Zhou, G. Y.; Shi, L. K. et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 2014, 5, 4938.CrossRefGoogle Scholar
  7. [7]
    Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.CrossRefGoogle Scholar
  8. [8]
    Roh, E.; Hwang, B.-U.; Kim, D.; Kim, B.-Y.; Lee, N.-E. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252–6261.CrossRefGoogle Scholar
  9. [9]
    Hwang, B.-U.; Lee, J.-H.; Trung, T. Q.; Roh, E.; Kim, D.-I.; Kim, S.-W.; Lee, N.-E. Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 2015, 9, 8801–8810.CrossRefGoogle Scholar
  10. [10]
    Lee, S.-K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho, J. H.; Ahn, J.-H. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 2011, 11, 4642–4646.CrossRefGoogle Scholar
  11. [11]
    Hattori, Y.; Falgout, L.; Lee, W.; Jung, S.-Y.; Poon, E.; Lee, J. W.; Na, I.; Geisler, A.; Sadhwani, D.; Zhang, Y. H. et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv. Healthc. Mater. 2014, 3, 1597–1607.CrossRefGoogle Scholar
  12. [12]
    Trung, T. Q.; Ramasundaram, S.; Hwang, B.-U.; Lee, N.-E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 2016, 28, 502–509.CrossRefGoogle Scholar
  13. [13]
    Trung, T. Q.; Lee, N.-E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 2016, 28, 4338–4372.CrossRefGoogle Scholar
  14. [14]
    Kao, K.-W. A.; Cheng, C.-J.; Gwo, S.; Yeh, J. A. A semiconductor gas system of healthcare for liver disease detection using ultrathin InN-based sensor. ECS Trans. 2015, 66, 151–157.CrossRefGoogle Scholar
  15. [15]
    Lorwongtragool, P.; Sowade, E.; Watthanawisuth, N.; Baumann, R. R.; Kerdcharoen, T. A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors 2014, 14, 19700–19712.CrossRefGoogle Scholar
  16. [16]
    McColl, D.; Cartlidge, B.; Connolly, P. Real-time monitoring of moisture levels in wound dressings in vitro: An experimental study. Int. J. Surg. 2007, 5, 316–322.CrossRefGoogle Scholar
  17. [17]
    Milne, S. D.; Seoudi, I.; Al Hamad, H.; Talal, T. K.; Anoop, A. A.; Allahverdi, N.; Zakaria, Z.; Menzies, R.; Connolly, P. A wearable wound moisture sensor as an indicator for wound dressing change: An observational study of wound moisture and status. Int. Wound J. 2016, 13, 1309–1314.CrossRefGoogle Scholar
  18. [18]
    Mehmood, N.; Hariz, A.; Templeton, S.; Voelcker, N. H. A flexible and low power telemetric sensing and monitoring system for chronic wound diagnostics. Biomed. Eng. Online 2015, 14, 17.CrossRefGoogle Scholar
  19. [19]
    Ho, D. H.; Sun, Q. J.; Kim, S. Y.; Han, J. T.; Kim, D. H.; Cho, J. H. Stretchable and multimodal all graphene electronic skin. Adv. Mater. 2016, 28, 2601–2608.CrossRefGoogle Scholar
  20. [20]
    Ryu, H.; Cho, S. J.; Kim, B.; Lim, G. A stretchable humidity sensor based on a wrinkled polyaniline nanostructure. RSC Adv. 2014, 4, 39767–39770.CrossRefGoogle Scholar
  21. [21]
    Kim, S. Y.; Park, S.; Park, H. W.; Park, D. H.; Jeong, Y.; Kim, D. H. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 2015, 27, 4178–4185.CrossRefGoogle Scholar
  22. [22]
    Trung, T. Q.; Lee, N.-E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater., in press, DOI: 10.1002/adma.201603167.Google Scholar
  23. [23]
    Smith, A. D.; Elgammal, K.; Niklaus, F.; Delin, A.; Fischer, A. C.; Vaziri, S.; Forsberg, F.; Rasander, M.; Hugosson, H.; Bergqvist, L. et al. Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 2015, 7, 19099–19109.CrossRefGoogle Scholar
  24. [24]
    Chen, M.-C.; Hsu, C.-L.; Hsueh, T.-J. Fabrication of humidity sensor based on bilayer graphene. IEEE Electron Device Lett. 2014, 35, 590–592.CrossRefGoogle Scholar
  25. [25]
    Ben Aziza, Z.; Zhang, K.; Baillargeat, D.; Zhang, Q. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine. Appl. Phys. Lett. 2015, 107, 134102.CrossRefGoogle Scholar
  26. [26]
    Hwang, S.-H.; Kang, D.; Ruoff, R. S.; Shin, H. S.; Park, Y.-B. Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing. ACS Nano 2014, 8, 6739–6747.CrossRefGoogle Scholar
  27. [27]
    Bi, H. C.; Yin, K. B.; Xie, X.; Ji, J.; Wan, S.; Sun, L. T.; Terrones, M.; Dresselhaus, M. S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013, 3, 2714.CrossRefGoogle Scholar
  28. [28]
    Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhänen, T. Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166–11173.CrossRefGoogle Scholar
  29. [29]
    Yu, H.-W.; Kim, H. K.; Kim, T.; Bae, K. M.; Seo, S. M.; Kim, J.-M.; Kang, T. J.; Kim, Y. H. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly(sodium 4-styrenesulfonate). ACS Appl. Mater. Interfaces 2014, 6, 8320–8326.CrossRefGoogle Scholar
  30. [30]
    Guo, L.; Jiang, H.-B.; Shao, R.-Q.; Zhang, Y.-L.; Xie, S.-Y.; Wang, J.-N.; Li, X.-B.; Jiang, F.; Chen, Q.-D.; Zhang, T. et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 2012, 50, 1667–1673.CrossRefGoogle Scholar
  31. [31]
    Zhang, D. Z.; Tong, J.; Xia, B. K. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B 2014, 197, 66–72.CrossRefGoogle Scholar
  32. [32]
    Li, Y.; Deng, C.; Yang, M. J. Facilely prepared composites of polyelectrolytes and graphene as the sensing materials for the detection of very low humidity. Sens. Actuators B 2014, 194, 51–58.CrossRefGoogle Scholar
  33. [33]
    Kuang, Q.; Lao, C. S.; Wang, Z. L.; Xie, Z. X.; Zheng, L. S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071.CrossRefGoogle Scholar
  34. [34]
    Cheng, B. C.; Tian, B. X.; Xie, C. C.; Xiao, Y. H.; Lei, S. J. Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes. J. Mater. Chem. 2011, 21, 1907–1912.CrossRefGoogle Scholar
  35. [35]
    Wang, X. F.; Ding, B.; Yu, J. Y.; Wang, M. R. Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. J. Mater. Chem. 2011, 21, 16231–16238.CrossRefGoogle Scholar
  36. [36]
    Naik, G.; Krishnaswamy, S. Room-temperature humidity sensing using graphene oxide thin films. Graphene 2016, 5, 1–13.CrossRefGoogle Scholar
  37. [37]
    Yao, Y.; Chen, X. D.; Guo, H. H.; Wu, Z. Q.; Li, X. Y. Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure. Sens. Actuators B 2012, 161, 1053–1058.CrossRefGoogle Scholar
  38. [38]
    Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 2011, 115, 17009–17019.CrossRefGoogle Scholar
  39. [39]
    Sheka, E. F.; Popova, N. A. Molecular theory of graphene oxide. Phys. Chem. Chem. Phys. 2013, 15, 13304–13322.CrossRefGoogle Scholar
  40. [40]
    Trung, T. Q.; Tien, N. T.; Kim, D.; Jung, J. H.; Yoon, O. J.; Lee, N.-E. High thermal responsiveness of a reduced graphene oxide field-effect transistor. Adv. Mater. 2012, 24, 5254–5260.CrossRefGoogle Scholar
  41. [41]
    Trung, T. Q.; Ramasundaram, S.; Hong, S. W.; Lee, N.-E. Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor. Adv. Funct. Mater. 2014, 24, 3438–3445.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tran Quang Trung
    • 1
  • Le Thai Duy
    • 1
  • Subramanian Ramasundaram
    • 2
  • Nae-Eung Lee
    • 1
    • 3
    • 4
    Email author
  1. 1.School of Advanced Materials Science & EngineeringSungkyunkwan University (SKKU)Suwon, Kyunggi-doRepublic of Korea
  2. 2.Center for Water Resource Cycle ResearchKorea Institute of Science and TechnologySeoulRepublic of Korea
  3. 3.SKKU Advanced Institute of Nanotechnology (SAINT)SKKUSuwon, Kyunggi-doRepublic of Korea
  4. 4.Samsung Advanced Institute for Health Sciences & Technology (SAIHST)SKKUSuwon, Kyunggi-doRepublic of Korea

Personalised recommendations