Advertisement

Nano Research

, Volume 10, Issue 6, pp 1996–2004 | Cite as

Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement

  • Qiuxiang Zhu
  • Feifei Qin
  • Junfeng Lu
  • Zhu Zhu
  • Haiyan Nan
  • Zengliang Shi
  • Zhenhua Ni
  • Chunxiang XuEmail author
Research Article

Abstract

Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its internal wall. When these two kinds of electromagnetic waves meet each other, the stimulated emissions from an individual ZnO microrod were enhanced more than 50-fold and the threshold was reduced after the whispering-gallery microcavity was coated with a monolayer of graphene and Al nanoparticles. The improvement of the lasing performance was attributed to the synergistic energy coupling of the graphene/Al surface plasmons with ZnO excitons. The lasing characteristics and the coupling mechanism were investigated systematically.

Keywords

ZnO microrod Al nanoparticles graphene surface plasmons energy coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Prof. Zhenhua Ni and Dr. Haiyan Nan from Department of Physics, Southeast University for their warm help in the material synthesis. This work was supported by the National Basic Research Program of China (No. 2013CB932903), National Natural Science Foundation of China (Nos. 61475035 and 61275054), the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. 2011KFJ004), the General Project of Education Department of Hunan Province (No. 15C0251), and Collaborative Innovation Center of Suzhou Nano Science and Technology.

References

  1. [1]
    Zu, P.; Tang, Z. K.; Wong, G. K. L.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 1997, 103, 459–463.CrossRefGoogle Scholar
  2. [2]
    Tang, Z. K.; Wong, G. K. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 1998, 72, 3270–3272.CrossRefGoogle Scholar
  3. [3]
    Lin, Y.; Li, J. T.; Xu, C. X.; Fan, X. M.; Wang, B. P. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower. Appl. Phys. Lett. 2014, 105, 142107.CrossRefGoogle Scholar
  4. [4]
    Zhang, S. G.; Zhang, X. W.; Yin, Z. G.; Wang, J. X.; Dong, J. J.; Gao, H. L.; Si, F. T.; Sun, S. S.; Tao, Y. Localized surface plasmon-enhanced electroluminescence from ZnObased heterojunction light-emitting diodes. Appl. Phys. Lett. 2011, 99, 181116.CrossRefGoogle Scholar
  5. [5]
    Lu, J. F.; Li, J. T.; Xu, C. X.; Li, Y.; Dai, J.; Wang, Y. Y.; Lin, Y.; Wang, S. F. Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Appl. Mater. Interfaces 2014, 6, 18301–18305.CrossRefGoogle Scholar
  6. [6]
    Lu, J. F.; Xu, C. X.; Dai, J.; Li, J. T.; Wang, Y. Y.; Lin, Y.; Li, P. L. Plasmon-enhanced whispering gallery mode lasing from hexagonal Al/ZnO microcavity. ACS Photonics 2015, 2, 73–77.CrossRefGoogle Scholar
  7. [7]
    Wang, Y. Y.; Xu, C. X.; Li, J. T.; Dai, J.; Lin, Y.; Zhu, G. Y.; Lu, J. F. Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles. Sci. Adv. Mater. 2015, 7, 1156–1162.CrossRefGoogle Scholar
  8. [8]
    Lin, J. M.; Lin, H. Y.; Cheng, C. L.; Chen, Y. F. Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 2006, 17, 4391.CrossRefGoogle Scholar
  9. [9]
    Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S.-H.; Ahn, K. J. et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403.CrossRefGoogle Scholar
  10. [10]
    Despoja, V.; Novko, D.; Dekanic, K.; Šunjic, M.; Marušic, L. Two-dimensional and p plasmon spectra in pristine and doped graphene. Phys. Rev. B 2013, 87, 075447.CrossRefGoogle Scholar
  11. [11]
    Eberlein, T.; Bangert, U.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406.CrossRefGoogle Scholar
  12. [12]
    Li, J. T.; Xu, C. X.; Nan, H. Y.; Jiang, M. M.; Gao, G. Y.; Lin, Y.; Dai, J.; Zhu, G. Y.; Ni, Z. H.; Wang, S. F. et al. Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity. ACS Appl. Mater. Interfaces 2014, 6, 10469–10475.CrossRefGoogle Scholar
  13. [13]
    Li, J. T.; Lin, Y.; Lu, J. F.; Xu, C. X.; Wang, Y. Y.; Shi, Z. L.; Dai, J. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance. ACS Nano 2015, 9, 6794–6800.CrossRefGoogle Scholar
  14. [14]
    Liu, R.; Fu, X.-W.; Meng, J.; Bie, Y.-Q.; Yu, D.-P.; Liao, Z.-M. Graphene plasmon enhanced photoluminescence in ZnO microwires. Nanoscale 2013, 5, 5294–5298.CrossRefGoogle Scholar
  15. [15]
    West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808.CrossRefGoogle Scholar
  16. [16]
    Xu, C. X.; Sun, X. W.; Chen, B. J. Field emission from gallium-doped zinc oxide nanofiber array. Appl. Phys. Lett. 2004, 84, 1540–1542.CrossRefGoogle Scholar
  17. [17]
    Dai, J.; Xu, C. X.; Zheng, K.; Lv, C. G.; Cui, Y. P. Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett. 2009, 95, 241110.CrossRefGoogle Scholar
  18. [18]
    Zhu, G. D.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P. Twophoton excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle. Appl. Phys. Lett. 2009, 94, 051106.CrossRefGoogle Scholar
  19. [19]
    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  20. [20]
    Berman, O. L.; Kezerashvili, R. Y.; Lozovik, Y. E. Graphene nanoribbon based spaser. Phys. Rev. B 2013, 88, 235424.CrossRefGoogle Scholar
  21. [21]
    Rupasinghe, C.; Rukhlenko, I. D.; Premaratne, M. Spaser made of graphene and carbon nanotubes. ACS Nano 2014, 8, 2431–2438.CrossRefGoogle Scholar
  22. [22]
    Xu, C. K.; Xu, G. D.; Liu, Y. K.; Wang, G. H. A simple and novel route for the preparation of ZnO nanorods. Solid State Commun. 2002, 122, 175–179.CrossRefGoogle Scholar
  23. [23]
    Xu, C. X.; Sun, X. W. Characteristics and growth mechanism of ZnO whiskers fabricated by vapor phase transport. Jpn. J. Appl. Phys. 2003, 42, 4949.CrossRefGoogle Scholar
  24. [24]
    Xu, C. X.; Zhu, G. P.; Li, X.; Yang, Y.; Tan, S. T.; Sun, X. W.; Lincoln, C.; Smith, T. A. Growth and spectral analysis of ZnO nanotubes. J. Appl. Phys. 2008, 103, 094303.CrossRefGoogle Scholar
  25. [25]
    Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.CrossRefGoogle Scholar
  26. [26]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  27. [27]
    Dai, J.; Xu, C. X.; Nakamura, T.; Wang, Y. Y.; Li, J. T.; Lin, Y. Electron–hole plasma induced band gap renormalization in ZnO microlaser cavities. Opt. Express 2014, 22, 28831–28837.CrossRefGoogle Scholar
  28. [28]
    Dai, J.; Xu, C. X.; Wu, P.; Guo, J. Y.; Li, Z. H.; Shi, Z. L. Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature. Appl. Phys. Lett. 2010, 97, 011101.CrossRefGoogle Scholar
  29. [29]
    Arai, N.; Takeda, J.; Ko, H.-J.; Yao, T. Dynamics of highdensity excitons and electron–hole plasma in ZnO epitaxial thin films. J. Lumin. 2006, 119-120, 346–349.CrossRefGoogle Scholar
  30. [30]
    Mitsubori, S.; Katayama, I.; Lee, S. H.; Yao, T.; Takeda, J. Ultrafast lasing due to electron–hole plasma in ZnO nanomultipods. J. Phys.: Condens. Matter 2009, 21, 064211.Google Scholar
  31. [31]
    Luo, X. G.; Qiu, T.; Lu, W. B.; Ni, Z. H. Plasmons in graphene: Recent progress and applications. Mater. Sci. Eng. R: Rep. 2013, 74, 351–376.CrossRefGoogle Scholar
  32. [32]
    Jiang, M. M.; Li, J. T.; Xu, C. X.; Wang, S. P.; Shan, C. X.; Xuan, B.; Ning, Y. Q.; Shen, D. Z. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Opt. Express 2014, 22, 23836–23850.CrossRefGoogle Scholar
  33. [33]
    Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733.CrossRefGoogle Scholar
  34. [34]
    Skriver, H. L.; Rosengaard, N. M. Surface energy and work function of elemental metals. Phys. Rev. B 1992, 46, 7157–7168.CrossRefGoogle Scholar
  35. [35]
    Wang, J.; Zheng, C. C.; Ning, J. Q.; Zhang, L. X.; Li, W.; Ni, Z. H.; Chen, Y.; Wang, J. N.; Xu, S. J. Luminescence signature of free exciton dissociation and liberated electron transfer across the junction of graphene/GaN hybrid structure. Sci. Rep. 2015, 5, 7687.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qiuxiang Zhu
    • 1
    • 2
  • Feifei Qin
    • 1
  • Junfeng Lu
    • 1
  • Zhu Zhu
    • 1
  • Haiyan Nan
    • 3
  • Zengliang Shi
    • 1
  • Zhenhua Ni
    • 3
  • Chunxiang Xu
    • 1
    Email author
  1. 1.State Key Laboratory of Bioelectronics, School of Biological Science & Medical EngineeringSoutheast UniversityNanjingChina
  2. 2.College of Communication and Electronic EngineeringHunan City UniversityYiyangChina
  3. 3.Department of PhysicsSoutheast UniversityNanjingChina

Personalised recommendations