Nano Research

, Volume 10, Issue 6, pp 1972–1979 | Cite as

YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics

  • Zhifeng Liu
  • Junyan Liu
  • Jijun ZhaoEmail author
Research Article


In spintronics, it is highly desirable to find new materials that can simultaneously possess complete spin-polarization, high-speed conduction electrons, large Curie temperature, and robust ferromagnetic ground states. Using first-principles calculations, we demonstrate that the stable YN2 monolayer with octahedral coordination is a novel p-state Dirac half metal (DHM), which not only has a fully spin-polarized Dirac state, but also the highest Fermi velocity (3.74 × 105 m/s) of the DHMs reported to date. In addition, its half-metallic gap of 1.53 eV is large enough to prevent the spin-flip transition. Because of the strong nonlocal p orbitals of N atoms (N-p) direct exchange interaction, the Curie temperature reaches over 332 K. Moreover, its ferromagnetic ground state can be well preserved under carrier doping or external strain. Therefore, the YN2 monolayer is a promising DHM for high-speed spintronic devices and would lead to new opportunities in designing other p-state DHMs.


spintronics Dirac half metal YN2 monolayer ferromagnetism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is currently supported by the National Natural Science Foundation of China (Nos. 11547260, 11134005, 11574040, and 11604165), the Scientific Research Project of Universities in the Inner Mongolia Autonomous Region (No. NJZY006), Natural Science Foundation of Inner Mongolia (No. 2016BS0104) and the 2014 Startup Project for the Introducing Doctor of Inner Mongolia University (No. 21200-5145135).

Supplementary material

12274_2016_1384_MOESM1_ESM.pdf (1.5 mb)
YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics


  1. [1]
    Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; Von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.CrossRefGoogle Scholar
  2. [2]
    Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.CrossRefGoogle Scholar
  3. [3]
    Awschalom, D. D.; Flatte, M. E. Challenges for semiconductor spintronics. Nat. Phys. 2007, 3, 153–159.CrossRefGoogle Scholar
  4. [4]
    Li, X. X.; Yang, J. L. First-principles design of spintronics materials. Natl. Sci. Rev. 2016, 3, 365–381.CrossRefGoogle Scholar
  5. [5]
    Felser, C.; Fecher, G. H.; Balke, B. Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem., Int. Ed. 2007, 46, 668–699.CrossRefGoogle Scholar
  6. [6]
    Wang, X. L. Proposal for a new class of materials: Spin gapless semiconductors. Phys. Rev. Lett. 2008, 100, 156404.CrossRefGoogle Scholar
  7. [7]
    Ishizuka, H.; Motome, Y. Dirac half-metal in a triangular ferrimagnet. Phys. Rev. Lett. 2012, 109, 237207.CrossRefGoogle Scholar
  8. [8]
    Li, Y. C.; West, D.; Huang, H. Q.; Li, J.; Zhang, S. B.; Duan, W. H. Theory of the Dirac half metal and quantum anomalous hall effect in Mn-intercalated epitaxial graphene. Phys. Rev. B 2015, 92, 201403(R).CrossRefGoogle Scholar
  9. [9]
    Cai, T. Y.; Li, X.; Wang, F.; Ju, S.; Feng, J.; Gong, C. D. Single-spin Dirac fermion and chern insulator based on simple oxides. Nano Lett. 2015, 15, 6434–6439.CrossRefGoogle Scholar
  10. [10]
    Wei, L.; Zhang, X. M.; Zhao, M. W. Spin-polarized Dirac cones and topological nontriviality in a metal-organic framework Ni2C24S6H12. Phys. Chem. Chem. Phys. 2016, 18, 8059–8064.CrossRefGoogle Scholar
  11. [11]
    He, J. J.; Ma, S. Y.; Lyu, P.; Nachtigall, P. Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. J. Mater. Chem. C 2016, 4, 2518–2526.CrossRefGoogle Scholar
  12. [12]
    Zhang, X. M.; Wang, A. Z.; Zhao, M. W. Spin-gapless semiconducting graphitic carbon nitrides: A theoretical design from first principles. Carbon 2015, 84, 1–8.CrossRefGoogle Scholar
  13. [13]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  14. [14]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  15. [15]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.CrossRefGoogle Scholar
  16. [16]
    Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151.CrossRefGoogle Scholar
  17. [17]
    Zhang, L. Z.; Wang, Z. F.; Du, S. X.; Gao, H. J.; Liu, F. Prediction of a Dirac state in monolayer TiB2. Phys. Rev. B 2014, 90, 161402(R).CrossRefGoogle Scholar
  18. [18]
    Zhang, S. L.; Hu, Y. H.; Hu, Z. Y.; Cai, B.; Zeng, H. B. Hydrogenated arsenenes as planar magnet and Dirac material. Appl. Phys. Lett. 2015, 107, 022102.CrossRefGoogle Scholar
  19. [19]
    Wang, S. M.; Ge, H.; Sun, S. L.; Zhang, J. Z.; Liu, F. M.; Wen, X. D.; Yu, X. H.; Wang, L. P.; Zhang, Y.; Xu, H. W. et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J. Am. Chem. Soc. 2015, 137, 4815–4822.CrossRefGoogle Scholar
  20. [20]
    Wu, F.; Huang, C. X.; Wu, H. P.; Lee, C.; Deng, K. M.; Kan, E. J.; Jena, P. Atomically thin transition-metal dinitrides: High-temperature ferromagnetism and half-metallicity. Nano Lett. 2015, 15, 8277–8281.CrossRefGoogle Scholar
  21. [21]
    Wang, Y.; Wang, S.-S.; Lu, Y. H.; Jiang, J. Z.; Yang, S. A. Strain-induced isostructural and magnetic phase transitions in monolayer MoN2. Nano Lett. 2016, 16, 4576–4582.CrossRefGoogle Scholar
  22. [22]
    Wu, H. P.; Qian, Y.; Lu, R. F.; Tan, W. S. A Theoretical study on the electronic property of a new two-dimensional material molybdenum dinitride. Phys. Lett. A 2016, 380, 768–772.CrossRefGoogle Scholar
  23. [23]
    Wang, Y. L.; Ding, Y. The hydrogen-induced structural stability and promising electronic properties of molybdenum and tungsten dinitride nanosheets: A first-principles study. J. Mater. Chem. C 2016, 4, 7485–7493.CrossRefGoogle Scholar
  24. [24]
    Zhang, C. Z.; Sun, Q. A Honeycomb BeN2 sheet with a desirable direct band gap and high carrier mobility. J. Phys. Chem. Lett. 2016, 7, 2664–2670.CrossRefGoogle Scholar
  25. [25]
    Zhang, S. H.; Zhou, J.; Wang, Q.; Jena, P. Beyond graphitic carbon nitride: Nitrogen-rich penta-CN2 sheet. J. Phys. Chem. C 2016, 120, 3993–3998.CrossRefGoogle Scholar
  26. [26]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  27. [27]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  28. [28]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  29. [29]
    Ataca, C.; Şahin, H.; Ciraci, S. Stable, Single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomblike structure. J. Phys. Chem. C 2012, 116, 8983–8999.CrossRefGoogle Scholar
  30. [30]
    Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Clarendon Press: Oxford, 1954.Google Scholar
  31. [31]
    Du, G. D.; Guo, Z. P.; Wang, S. Q.; Zeng, R.; Chen, Z. X.; Liu, H. K. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 2010, 46, 1106–1108.CrossRefGoogle Scholar
  32. [32]
    Crowhurst, J. C.; Goncharov, A. F.; Sadigh, B.; Evans, C. L.; Morrall, P. G.; Ferreira, J. L.; Nelson, A. J. Synthesis and characterization of the nitrides of platinum and iridium. Science 2006, 311, 1275–1278.CrossRefGoogle Scholar
  33. [33]
    Young, A. F.; Sanloup, C.; Gregoryanz, E.; Scandolo, S.; Hemley, R. J.; Mao, H.-K. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 2006, 96, 155501.CrossRefGoogle Scholar
  34. [34]
    Kawamura, F.; Yusa, H.; Taniguchi, T. Synthesis of rhenium nitride crystals with MoS2 structure. Appl. Phys. Lett. 2012, 100, 251910.CrossRefGoogle Scholar
  35. [35]
    Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 2004, 69, 155406.CrossRefGoogle Scholar
  36. [36]
    Björkman, T.; Gulans, A.; Krasheninnikov, A. V.; Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 2012, 108, 235502.CrossRefGoogle Scholar
  37. [37]
    Zhao, S. T.; Li, Z. Y.; Yang, J. L. Obtaining two-dimensional electron gas in free space without resorting to electron doping: An electride based design. J. Am. Chem. Soc. 2014, 136, 13313–13318.CrossRefGoogle Scholar
  38. [38]
    Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for graphene: Graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 2012, 108, 086804.CrossRefGoogle Scholar
  39. [39]
    Li, Y. C.; Chen, P. C.; Zhou, G.; Li, J.; Wu, J.; Gu, B. L.; Zhang, S. B.; Duan, W. H. Dirac fermions in strongly bound graphene systems. Phys. Rev. Lett. 2012, 109, 206802.CrossRefGoogle Scholar
  40. [40]
    Hasegawa, Y.; Konno, R.; Nakano, H.; Kohmoto, M. Zero modes of tight-binding electrons on the honeycomb lattice. Phys. Rev. B 2006, 74, 033413.CrossRefGoogle Scholar
  41. [41]
    Wang, Y. L.; Ding, Y. Strain-induced self-doping in silicene and germanene from first-principles. Solid State Comm. 2013, 155, 6–11.CrossRefGoogle Scholar
  42. [42]
    Zhou, J.; Sun, Q. Magnetism of phthalocyanine-based organometallic single porous sheet. J. Am. Chem. Soc. 2011, 133, 15113–15119.CrossRefGoogle Scholar
  43. [43]
    Li, X. X.; Wu, X. J.; Yang, J. L. Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping. J. Am. Chem. Soc. 2014, 136, 11065–11069.CrossRefGoogle Scholar
  44. [44]
    Zhao, M. W.; Wang, A. Z.; Zhang, X. M. Half-metallicity of a Kagome spin lattice: The case of a manganese bisdithiolene monolayer. Nanoscale 2013, 5, 10404–10408.CrossRefGoogle Scholar
  45. [45]
    Kan, M.; Zhou, J.; Sun, Q.; Kawazoe, Y.; Jena, P. The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 2013, 4, 3382–3386.CrossRefGoogle Scholar
  46. [46]
    Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt Rinehart/Winston: New York, 1976.Google Scholar
  47. [47]
    Liu, J. Y.; Sun, Q. Enhanced ferromagnetism in a Mn3C12N12H12 sheet. ChemPhysChem 2015, 16, 614–620.CrossRefGoogle Scholar
  48. [48]
    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.CrossRefGoogle Scholar
  49. [49]
    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyInner Mongolia UniversityHohhotChina
  2. 2.Beijing Computational Science Research CenterBeijingChina
  3. 3.Key Laboratory of Materials Modification by Laser, Ion and Electron BeamsDalian University of TechnologyDalianChina

Personalised recommendations