Advertisement

Nano Research

, Volume 10, Issue 4, pp 1268–1281 | Cite as

Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries

  • Jiantie Xu
  • In-Yup Jeon
  • Jianmin Ma
  • Yuhai Dou
  • Seok-Jin Kim
  • Jeong-Min Seo
  • Huakun Liu
  • Shixue Dou
  • Jong-Beom Baek
  • Liming Dai
Research Article

Abstract

Phosphorus has recently received extensive attention as a promising anode for lithium ion batteries (LIBs) due to its high theoretical capacity of 2,596 mAh·g–1. To develop high-performance phosphorus anodes for LIBs, carbon materials have been hybridized with phosphorus (P-C) to improve dispersion and conductivity. However, the specific capacity, rate capability, and cycling stability of P-C anodes are still less than satisfactory for practical applications. Furthermore, the exact effects of the carbon support on the electrochemical performance of the P-C anodes are not fully understood. Herein, a series of xP-yC anode materials for LIBs were prepared by a simple and efficient ball-milling method. 6P-4C and 3P-7C were found to be optimum mass ratios of x/y, and delivered initial discharge capacities of 1,803.5 and 1,585.3·mAh·g–1, respectively, at 0.1 C in the voltage range 0.02–2 V, with an initial capacity retention of 68.3% over 200 cycles (more than 4 months cycling life) and 40.8% over 450 cycles. The excellent electrochemical performance of the 6P-4C and 3P-7C samples was attributed to a synergistic effect from both the adsorbed P and carbon.

Keywords

phosphorus carbon synergistic effect anode lithium ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful for financial support from the Gobal Challenge Program grant (University of wollongong), Australia Auto CRC 2020, Creative Research Initiative (NRF), and National Science Foundation (No. NSF-CMMI-1400274). The autors also want to thank Ms. Donghua Han, and Mr. Boyang Ruan for their great help.

Supplementary material

12274_2016_1383_MOESM1_ESM.pdf (6 mb)
Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries

References

  1. [1]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  2. [2]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  3. [3]
    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.CrossRefGoogle Scholar
  4. [4]
    Xu, J. T.; Dou, S. X.; Liu, H. K.; Dai, L. M. Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2, 439–442.CrossRefGoogle Scholar
  5. [5]
    Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954.CrossRefGoogle Scholar
  6. [6]
    Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.CrossRefGoogle Scholar
  7. [7]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  8. [8]
    Ma, D.-L.; Cao, Z.-Y.; Wang, H.-G.; Huang, X.-L.; Wang, L.-M.; Zhang, X.-B. Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 2012, 5, 8538–8542.CrossRefGoogle Scholar
  9. [9]
    Huang, Y.; Huang, X.-L.; Lian, J.-S.; Xu, D.; Wang, L.-M.; Zhang, X.-B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.CrossRefGoogle Scholar
  10. [10]
    Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465–2468.CrossRefGoogle Scholar
  11. [11]
    Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 2011, 13, 346–349.CrossRefGoogle Scholar
  12. [12]
    Park, M.-S.; Kim, J.-H.; Jo, Y.-N.; Oh, S.-H.; Kim, H.; Kim, Y.-J. Incorporation of phosphorus into the surface of natural graphite anode for lithium ion batteries. J. Mater. Chem. 2011, 21, 17960–17966.CrossRefGoogle Scholar
  13. [13]
    Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931–8933.CrossRefGoogle Scholar
  14. [14]
    Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51, 9034–9037.CrossRefGoogle Scholar
  15. [15]
    Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.CrossRefGoogle Scholar
  16. [16]
    Li, W. H.; Yang, Z. Z.; Jiang, Y.; Yu, Z. R.; Gu, L.; Yu, Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 2014, 78, 455–462.CrossRefGoogle Scholar
  17. [17]
    Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 2014, 1, 580–589.CrossRefGoogle Scholar
  18. [18]
    Ma, X. L.; Ning, G. Q.; Qi, C. L.; Xu, C. G.; Gao, J. S. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 14415–14422.CrossRefGoogle Scholar
  19. [19]
    Sun, J.; Zheng, G. Y.; Lee, H.-W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.CrossRefGoogle Scholar
  20. [20]
    Li, W. F.; Yang, Y. M.; Zhang, G.; Zhang, Y.-W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 2015, 15, 1691–1697.CrossRefGoogle Scholar
  21. [21]
    Yu, Z. X.; Song, J. X.; Gordin, M. L.; Yi, R.; Tang, D. H.; Wang, D. H. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2015, 2, 1400020.CrossRefGoogle Scholar
  22. [22]
    Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.CrossRefGoogle Scholar
  23. [23]
    Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480–5484.CrossRefGoogle Scholar
  24. [24]
    Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 125, 4731–4734.CrossRefGoogle Scholar
  25. [25]
    Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.CrossRefGoogle Scholar
  26. [26]
    Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.CrossRefGoogle Scholar
  27. [27]
    Katayama, Y.; Mizutani, T.; Utsumi, W.; Shimomura, O.; Yamakata, M.; Funakoshi, K.-I. A first-order liquid–liquid phase transition in phosphorus. Nature 2000, 403, 170–173.CrossRefGoogle Scholar
  28. [28]
    Chou, T.-D.; Lee, T.-W.; Chen, S.-L.; Tung, Y.-M.; Dai, N.-T.; Chen, S.-G.; Lee, C.-H.; Chen, T.-M.; Wang, H.-J. The management of white phosphorus burns. Burns 2001, 27, 492–497.CrossRefGoogle Scholar
  29. [29]
    Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A. M. Phosphoruscarbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2015, 3, 5572–5584.CrossRefGoogle Scholar
  30. [30]
    McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  31. [31]
    Xu, J. T.; Shui, J. L.; Wang, J. L.; Wang, M.; Liu, H.-K.; Dou, S. X.; Jeon, I.-Y.; Seo, J.-M.; Baek, J.-B.; Dai, L. M. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 10920–10930.CrossRefGoogle Scholar
  32. [32]
    Xu, J. T.; Jeon, I.-Y.; Seo, J.-M.; Dou, S. X.; Dai, L. M.; Baek, J.-B. Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries. Adv. Mater. 2014, 26, 7317–7323.CrossRefGoogle Scholar
  33. [33]
    Jeon, I.-Y.; Shin, Y.-R.; Sohn, G.-J.; Choi, H.-J.; Bae, S.-Y.; Mahmood, J.; Jung, S.-M.; Seo, J.-M.; Kim, M.-J.; Chang, D. W. et al. Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. USA 2012, 109, 5588–5593.CrossRefGoogle Scholar
  34. [34]
    Jeon, I. Y.; Zhang, S.; Zhang, L. P.; Choi, H. J.; Seo, J. M.; Xia, Z. H.; Dai, L. M.; Baek, J. B. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect. Adv. Mater. 2013, 25, 6138–6145.CrossRefGoogle Scholar
  35. [35]
    Kim, M.-J.; Jeon, I.-Y.; Seo, J.-M.; Dai, L. M.; Baek, J.-B. Graphene phosphonic acid as an efficient flame retardant. ACS Nano 2014, 8, 2820–2825.CrossRefGoogle Scholar
  36. [36]
    Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67–86.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia
  2. 2.School of Energy and Chemical Engineering/Low-Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  3. 3.Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations