Nano Research

, Volume 10, Issue 4, pp 1268–1281 | Cite as

Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries

Research Article


Phosphorus has recently received extensive attention as a promising anode for lithium ion batteries (LIBs) due to its high theoretical capacity of 2,596 mAh·g–1. To develop high-performance phosphorus anodes for LIBs, carbon materials have been hybridized with phosphorus (P-C) to improve dispersion and conductivity. However, the specific capacity, rate capability, and cycling stability of P-C anodes are still less than satisfactory for practical applications. Furthermore, the exact effects of the carbon support on the electrochemical performance of the P-C anodes are not fully understood. Herein, a series of xP-yC anode materials for LIBs were prepared by a simple and efficient ball-milling method. 6P-4C and 3P-7C were found to be optimum mass ratios of x/y, and delivered initial discharge capacities of 1,803.5 and 1,585.3·mAh·g–1, respectively, at 0.1 C in the voltage range 0.02–2 V, with an initial capacity retention of 68.3% over 200 cycles (more than 4 months cycling life) and 40.8% over 450 cycles. The excellent electrochemical performance of the 6P-4C and 3P-7C samples was attributed to a synergistic effect from both the adsorbed P and carbon.


phosphorus carbon synergistic effect anode lithium ion batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1383_MOESM1_ESM.pdf (6 mb)
Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries


  1. [1]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  2. [2]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  3. [3]
    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.CrossRefGoogle Scholar
  4. [4]
    Xu, J. T.; Dou, S. X.; Liu, H. K.; Dai, L. M. Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2, 439–442.CrossRefGoogle Scholar
  5. [5]
    Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954.CrossRefGoogle Scholar
  6. [6]
    Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.CrossRefGoogle Scholar
  7. [7]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  8. [8]
    Ma, D.-L.; Cao, Z.-Y.; Wang, H.-G.; Huang, X.-L.; Wang, L.-M.; Zhang, X.-B. Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 2012, 5, 8538–8542.CrossRefGoogle Scholar
  9. [9]
    Huang, Y.; Huang, X.-L.; Lian, J.-S.; Xu, D.; Wang, L.-M.; Zhang, X.-B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.CrossRefGoogle Scholar
  10. [10]
    Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465–2468.CrossRefGoogle Scholar
  11. [11]
    Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 2011, 13, 346–349.CrossRefGoogle Scholar
  12. [12]
    Park, M.-S.; Kim, J.-H.; Jo, Y.-N.; Oh, S.-H.; Kim, H.; Kim, Y.-J. Incorporation of phosphorus into the surface of natural graphite anode for lithium ion batteries. J. Mater. Chem. 2011, 21, 17960–17966.CrossRefGoogle Scholar
  13. [13]
    Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931–8933.CrossRefGoogle Scholar
  14. [14]
    Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51, 9034–9037.CrossRefGoogle Scholar
  15. [15]
    Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.CrossRefGoogle Scholar
  16. [16]
    Li, W. H.; Yang, Z. Z.; Jiang, Y.; Yu, Z. R.; Gu, L.; Yu, Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 2014, 78, 455–462.CrossRefGoogle Scholar
  17. [17]
    Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 2014, 1, 580–589.CrossRefGoogle Scholar
  18. [18]
    Ma, X. L.; Ning, G. Q.; Qi, C. L.; Xu, C. G.; Gao, J. S. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 14415–14422.CrossRefGoogle Scholar
  19. [19]
    Sun, J.; Zheng, G. Y.; Lee, H.-W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.CrossRefGoogle Scholar
  20. [20]
    Li, W. F.; Yang, Y. M.; Zhang, G.; Zhang, Y.-W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 2015, 15, 1691–1697.CrossRefGoogle Scholar
  21. [21]
    Yu, Z. X.; Song, J. X.; Gordin, M. L.; Yi, R.; Tang, D. H.; Wang, D. H. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2015, 2, 1400020.CrossRefGoogle Scholar
  22. [22]
    Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.CrossRefGoogle Scholar
  23. [23]
    Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480–5484.CrossRefGoogle Scholar
  24. [24]
    Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 125, 4731–4734.CrossRefGoogle Scholar
  25. [25]
    Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.CrossRefGoogle Scholar
  26. [26]
    Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.CrossRefGoogle Scholar
  27. [27]
    Katayama, Y.; Mizutani, T.; Utsumi, W.; Shimomura, O.; Yamakata, M.; Funakoshi, K.-I. A first-order liquid–liquid phase transition in phosphorus. Nature 2000, 403, 170–173.CrossRefGoogle Scholar
  28. [28]
    Chou, T.-D.; Lee, T.-W.; Chen, S.-L.; Tung, Y.-M.; Dai, N.-T.; Chen, S.-G.; Lee, C.-H.; Chen, T.-M.; Wang, H.-J. The management of white phosphorus burns. Burns 2001, 27, 492–497.CrossRefGoogle Scholar
  29. [29]
    Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A. M. Phosphoruscarbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2015, 3, 5572–5584.CrossRefGoogle Scholar
  30. [30]
    McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.CrossRefGoogle Scholar
  31. [31]
    Xu, J. T.; Shui, J. L.; Wang, J. L.; Wang, M.; Liu, H.-K.; Dou, S. X.; Jeon, I.-Y.; Seo, J.-M.; Baek, J.-B.; Dai, L. M. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 10920–10930.CrossRefGoogle Scholar
  32. [32]
    Xu, J. T.; Jeon, I.-Y.; Seo, J.-M.; Dou, S. X.; Dai, L. M.; Baek, J.-B. Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries. Adv. Mater. 2014, 26, 7317–7323.CrossRefGoogle Scholar
  33. [33]
    Jeon, I.-Y.; Shin, Y.-R.; Sohn, G.-J.; Choi, H.-J.; Bae, S.-Y.; Mahmood, J.; Jung, S.-M.; Seo, J.-M.; Kim, M.-J.; Chang, D. W. et al. Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. USA 2012, 109, 5588–5593.CrossRefGoogle Scholar
  34. [34]
    Jeon, I. Y.; Zhang, S.; Zhang, L. P.; Choi, H. J.; Seo, J. M.; Xia, Z. H.; Dai, L. M.; Baek, J. B. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect. Adv. Mater. 2013, 25, 6138–6145.CrossRefGoogle Scholar
  35. [35]
    Kim, M.-J.; Jeon, I.-Y.; Seo, J.-M.; Dai, L. M.; Baek, J.-B. Graphene phosphonic acid as an efficient flame retardant. ACS Nano 2014, 8, 2820–2825.CrossRefGoogle Scholar
  36. [36]
    Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67–86.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia
  2. 2.School of Energy and Chemical Engineering/Low-Dimensional Carbon Materials CenterUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  3. 3.Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations