Nano Research

, Volume 10, Issue 6, pp 1959–1971 | Cite as

Tailoring RGD local surface density at the nanoscale toward adult stem cell chondrogenic commitment

  • Anna LagunasEmail author
  • Iro Tsintzou
  • Yolanda Vida
  • Daniel Collado
  • Ezequiel Pérez-Inestrosa
  • Cristina Rodríguez Pereira
  • Joana Magalhaes
  • José A. Andrades
  • Josep Samitier
Research Article


Arginine-glycine-aspartic acid (RGD) dendrimer-based nanopatterns on poly(L-lactic acid) were used as bioactive substrates to evaluate the impact of the RGD local surface density on the chondrogenic induction of adult human mesenchymal stem cells. During chondrogenic commitment, active extracellular matrix (ECM) remodeling takes place, playing an instructive role in the differentiation process. Although three-dimensional environments such as pellet or micromass cultures are commonly used for in vitro chondrogenic differentiation, these cultures are rather limited with respect to their ability to interrogate cells in cell–ECM interactions. In the present study, the nanopatterns of the tunable RGD surface density were obtained as a function of the initial dendrimer concentration. The local RGD surface density was quantified through probability contour plots for the minimum interparticle distance, constructed from the corresponding atomic force microscopy images, and correlated with the cell adhesion and differentiation response. The results revealed that the local RGD surface density at the nanoscale acts as a regulator of chondrogenic commitment, and that intermediate adhesiveness of cells to the substrates favors mesenchymal cell condensation and early chondrogenic differentiation.


dendrimer arginine-glycine-aspartic acid (RGD) nanopattern human mesenchymal stem cells (hMSCs) chondrogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors acknowledge Prof. Pau Gorostiza for its help in STM experiments, Albert G. Castaño for his help in d min quantification, and Dr. David Caballero for his support in microscopy video recording. This work was supported by Networking Biomedical Research Center (CIBER), Spain. CIBER is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and the Instituto de Salud Carlos III, with the support of the European Regional Development Fund. This work has been financially supported by the Commission for Universities and Research of the Department of Innovation, Universities, and Enterprise of the Generalitat de Catalunya (2014 SGR 1442). This work was funded by the project OLIGOCODES (No. MAT2012-38573-C02) and by the project CTQ2013-41339-P, awarded by the Spanish Ministry of Economy and Competitiveness. C. R. P. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness grant (No. IFI15/00151).

Supplementary material

12274_2016_1382_MOESM1_ESM.avi (2.1 mb)
Supplementary material, approximately 2.10 MB.
12274_2016_1382_MOESM2_ESM.pdf (1.7 mb)
Tailoring RGD local surface density at the nanoscale toward adult stem cell chondrogenic commitment


  1. [1]
    Jiang, F.; Hörber, H.; Howard, J.; Müller, D. J. Assembly of collagen into microribbons: Effects of pH and electrolytes. J. Struct. Biol. 2004, 148, 268–278.CrossRefGoogle Scholar
  2. [2]
    Smith, M. L.; Gourdon, D.; Little, W. C.; Kubow, K. E.; Eguiluz, R. A.; Luna-Morris, S.; Vogel, V. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 2007, 5, e268.CrossRefGoogle Scholar
  3. [3]
    Little, W. C.; Smith, M. L.; Ebneter, U.; Vogel, V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 2008, 27, 451–461.CrossRefGoogle Scholar
  4. [4]
    Christman, K. L.; Enriquez-Rios, V. D.; Maynard, H. D. Nanopatterning proteins and peptides. Soft Matter 2006, 2, 928–939.CrossRefGoogle Scholar
  5. [5]
    Falconnet, D.; Csucs, G.; Grandin, H. M.; Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006, 27, 3044–3063.CrossRefGoogle Scholar
  6. [6]
    Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blümmel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 2004, 5, 383–388.CrossRefGoogle Scholar
  7. [7]
    Cavalcanti-Adam, E. A.; Micoulet, A.; Blümmel, J.; Auernheimer, J.; Kessler, H.; Spatz, J. P. Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur. J. Cell. Biol. 2006, 85, 219–224.CrossRefGoogle Scholar
  8. [8]
    Arnold, M.; Schwieder, M.; Blümmel, J.; Cavalcanti-Adam, E. A.; López-Garcia, M.; Kessler, H.; Geiger, B.; Spatz, J. P. Cell interactions with hierarchically structured nano-patterned adhesive surfaces. Soft Matter 2009, 5, 72–77.CrossRefGoogle Scholar
  9. [9]
    Cavalcanti-Adam, E. A.; Volberg, T.; Micoulet, A.; Kessler, H.; Geiger, B.; Spatz, J. P. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 2007, 92, 2964–2974.CrossRefGoogle Scholar
  10. [10]
    Medda, R.; Helth, A.; Herre, P.; Pohl, D.; Rellinghaus, B.; Perschmann, N.; Neubauer, S.; Keßsler, H.; Oswald, S.; Eckert, J. et al. Investigation of early cell–surface interactions of human mesenchymal stem cells on nanopatterned ß-type titanium-niobium alloy surfaces. Interface Focus 2014, 4, 20130046.Google Scholar
  11. [11]
    Wang, X.; Yan, C.; Ye, K.; He, Y.; Li, Z. H.; Ding, J. D. Effect of RGD nanospacing on differentiation of stem cells. Biomaterials 2013, 34, 2865–2874.CrossRefGoogle Scholar
  12. [12]
    Wang, X.; Ye, K.; Li, Z. H.; Yan, C.; Ding, J. D. Adhesion, proliferation, and differentiation of mesenchymal stem cells on RGD nanopatterns of varied nanospacings. Organogenesis 2013, 9, 280–286.CrossRefGoogle Scholar
  13. [13]
    Li, Z. H.; Cao, B.; Wang, X.; Ye, K.; Li, S. Y.; Ding, J. D. Effects of RGD nanospacing on chondrogenic differentiation of mesenchymal stem cells. J. Mater. Chem. B 2015, 3, 5197–5209.CrossRefGoogle Scholar
  14. [14]
    Wang, X.; Li, S. Y.; Yan, C.; Liu, P.; Ding, J. D. Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. Nano Lett. 2015, 15, 1457–1467.CrossRefGoogle Scholar
  15. [15]
    Stephanopoulos, N.; Freeman, R.; North, H. A.; Sur, S.; Jeong, S. J.; Tantakitti, F.; Kessler, J. A.; Stupp, S. I. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett. 2015, 15, 603–609.CrossRefGoogle Scholar
  16. [16]
    Rolland, O.; Turrin, C. O.; Caminade, A. M.; Majoral, J. P. Dendrimers and nanomedicine: Multivalency in action. New J. Chem. 2009, 33, 1809–1824.CrossRefGoogle Scholar
  17. [17]
    Saovapakhiran, A.; D’Emanuele, A.; Attwood, D.; Penny, J. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug. Chem. 2009, 20, 693–701.CrossRefGoogle Scholar
  18. [18]
    Albertazzi, L.; Fernandez-Villamarin, M.; Riguera, R.; Fernandez-Megia, E. Peripheral functionalization of dendrimers regulates internalization and intracellular trafficking in living cells. Bioconjug. Chem. 2012, 23, 1059–1068.CrossRefGoogle Scholar
  19. [19]
    Mikhail, A. S.; Jones, K. S.; Sheardown, H. Dendrimergrafted cell adhesion peptide-modified PDMS. Biotechnol. Prog. 2008, 24, 938–944.CrossRefGoogle Scholar
  20. [20]
    Kino-oka, M.; Kim, J.; Kurisaka, K.; Kim, M. H. Preferential growth of skeletal myoblasts and fibroblasts in co-culture on a dendrimer-immobilized surface. J. Biosci. Bioeng. 2013, 115, 96–99.CrossRefGoogle Scholar
  21. [21]
    Lomba, M.; Oriol, L.; Sánchez-Somolinos, C.; Grazú, V.; Moros, M.; Serrano, J. L.; Martínez De la Fuente, J. Cell adhesion on surface patterns generated by the photocrosslinking of hyperbranched polyesters with a trisdiazonium salt. React. Funct. Polym. 2013, 73, 499–507.CrossRefGoogle Scholar
  22. [22]
    Kim, M. H.; Kino-oka, M.; Morinaga, Y.; Sawada, Y.; Kawase, M.; Yagi, K.; Taya, M. Morphological regulation and aggregate formation of rabbit chondrocytes on dendrimerimmobilized surfaces with D-glucose display. J. Biosci. Bioeng. 2009, 107, 196–205.CrossRefGoogle Scholar
  23. [23]
    Kim, M. H.; Kino-oka, M.; Kawase, M.; Yagi, K.; Taya, M. Synergistic effect of D-glucose and epidermal growth factor display on dynamic behaviors of human epithelial cells. J. Biosci. Bioeng. 2007, 104, 428–431.CrossRefGoogle Scholar
  24. [24]
    Maheshwari, G.; Brown, G.; Lauffenburger, D. A.; Wells, A.; Griffith, L. G. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 2000, 113, 1677–1686.Google Scholar
  25. [25]
    Lagunas, A.; Castaño, A. G.; Artés, J. M.; Vida, Y.; Collado, D.; Pérez-Inestrosa, E.; Gorostiza, P.; Claros, S.; Andrades, J. A.; Samitier, J. Large-scale dendrimer-based uneven nanopatterns for the study of local arginine-glycineaspartic acid (RGD) density effects on cell adhesion. Nano Res. 2014, 7, 399–409.CrossRefGoogle Scholar
  26. [26]
    Singh, P.; Schwarzbauer, J. E. Fibronectin and stem cell differentiation—Lessons from chondrogenesis. J. Cell Sci. 2012, 125, 3703–3712.CrossRefGoogle Scholar
  27. [27]
    Griffin, M. F.; Butler, P. E.; Seifalian, A. M.; Kalaskar, D. M. Control of stem cell fate by engineering their micro and nanoenvironment. World J. Stem Cells 2015, 7, 37–50.CrossRefGoogle Scholar
  28. [28]
    Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 13705–13713.CrossRefGoogle Scholar
  29. [29]
    Magalhães, J.; Lebourg, M., Deplaine, H.; Gómez-Ribelles, J. L.; Blanco, F. J. Effect of the physicochemical properties of pure or chitosan-coated poly(L-lactic acid) scaffolds on the chondrogenic differentiation of mesenchymal stem cells from osteoarthritic patients. Tissue Eng. Part A 2015, 21, 716–728.CrossRefGoogle Scholar
  30. [30]
    Boas, U.; Heegaard, P. M. H. Dendrimers in drug research. Chem. Soc. Rev. 2004, 33, 43–63.CrossRefGoogle Scholar
  31. [31]
    Mager, D. M.; LaPointe, V.; Stevens, M. M. Exploring and exploiting chemistry at the cell surface. Nat. Chem. 2011, 3, 582–589.CrossRefGoogle Scholar
  32. [32]
    Zelzer, M.; Majani, R.; Bradley, J. W.; Rose, F. R. A. J.; Davies, M. C.; Alexander, M. R. Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials 2008, 29, 172–184.CrossRefGoogle Scholar
  33. [33]
    Huang, J. H.; Gräter, S. V.; Corbellini, F.; Rinck, S.; Bock, E.; Kemkemer, R.; Kessler, H.; Ding, J. D.; Spatz, J. P. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 2009, 9, 1111–1116.CrossRefGoogle Scholar
  34. [34]
    Chen, S.; Lewallen, M.; Xie, T. Adhesion in the stem cell niche: Biological roles and regulation. Development 2013, 140, 255–265.CrossRefGoogle Scholar
  35. [35]
    Rojas-Ríos, P.; González-Reyes, A. The plasticity of stem cell niches: A general property behind tissue homeostasis and repair. Stem Cells 2014, 32, 852–859.CrossRefGoogle Scholar
  36. [36]
    Bobick, B. E.; Chen, F. H.; Le, A. M.; Tuan, R. S. Regulation of the chondrogenic phenotype in culture. Birth Defects Res. C Embryo Today 2009, 87, 351–371.CrossRefGoogle Scholar
  37. [37]
    Zhu, Y. B.; Gao, C. Y.; Liu, X. Y.; He, T.; Shen, J. C. Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng. 2004, 10, 53–61.CrossRefGoogle Scholar
  38. [38]
    Takiewicz, W. I.; Seras-Franzoso, J.; García-Fruitós, E.; Vazquez, E.; Ventosa, N.; Peebo, K.; Ratera, I.; Villaverde, A.; Veciana, J. Two-dimensional microscale engineering of protein-based nanoparticles for cell guidance. ACS Nano 2013, 7, 4774–4784.CrossRefGoogle Scholar
  39. [39]
    Healy, C.; Uwanogho, D.; Sharpe, P. T. Regulation and role of Sox9 in cartilage formation. Dev. Dyn. 1999, 215, 69–78.CrossRefGoogle Scholar
  40. [40]
    Kumar, D.; Lassar, A. B. The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization. Mol. Cell. Biol. 2009, 29, 4262–4273.CrossRefGoogle Scholar
  41. [41]
    Bang, O. S.; Kim, E. J.; Chung, J. G.; Lee, S. R.; Park, T. K.; Kang, S. S. Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells. Biochem. Biophys. Res. Commun. 2000, 278, 522–529.CrossRefGoogle Scholar
  42. [42]
    DeLise, A. M.; Fisher, L.; Tuan, R. S. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 2000, 8, 309–334.CrossRefGoogle Scholar
  43. [43]
    Palecek, S. P.; Loftus, J. C.; Ginsberg, M. H.; Lauffenburger, D. A.; Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 1997, 385, 537–540.CrossRefGoogle Scholar
  44. [44]
    Woods, A.; Wang, G. Y.; Beier, F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J. Biol. Chem. 2005, 280, 11626–11634.CrossRefGoogle Scholar
  45. [45]
    Kosher, R. A.; Kulyk, W. M.; Gay, S. W. Collagen gene expression during limb cartilage differentiation. J. Cell Biol. 1986, 102, 1151–1156.CrossRefGoogle Scholar
  46. [46]
    Lim, Y. B.; Kang, S. S.; Park, T. K.; Lee, Y. S.; Chun, J. S.; Sonn, J. K. Disruption of actin cytoskeleton induces chondrogenesis of mesenchymal cells by activating protein kinase C-a signaling. Biochem. Biophys. Res. Commun. 2000, 273, 609–613.CrossRefGoogle Scholar
  47. [47]
    Lim, Y. B.; Kang, S. S.; An, W. G.; Lee, Y. S.; Chun, J. S.; Sonn, J. K. Chondrogenesis induced by actin cytoskeleton disruption is regulated via protein kinase C-dependent p38 mitogen-activated protein kinase signaling. J. Cell. Biochem. 2003, 88, 713–718.CrossRefGoogle Scholar
  48. [48]
    Murphy-Ulrich, J. E. The de-adhesive activity of matricellular proteins: Is intermediate cell adhesion an adaptive state? J. Clin. Invest. 2001, 107, 785–790.CrossRefGoogle Scholar
  49. [49]
    Bi, W. M.; Huang, W. D.; Whitworth, D. J.; Deng, J. M.; Zhang, Z. P.; Behringer, R. R.; de Crombrugghe, B. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc. Natl. Acad. Sci. USA 2001, 98, 6698–6703.CrossRefGoogle Scholar
  50. [50]
    Chen, S.; Fu, P. L.; Cong, R. J.; Wu, H. S.; Pei, M. Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis. 2015, 2, 76–95.CrossRefGoogle Scholar
  51. [51]
    Chen, W.-H.; Lai, M.-T.; Wu, A. T. H.; Wu, C.-C.; Gelovani, J. G.; Lin, C.-T.; Hung, S.-C.; Chiu, W.-T.; Deng, W.-P. In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes Arthritis Rheum. 2009, 60, 450–459.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anna Lagunas
    • 1
    • 2
    Email author
  • Iro Tsintzou
    • 2
  • Yolanda Vida
    • 3
    • 4
  • Daniel Collado
    • 3
    • 4
  • Ezequiel Pérez-Inestrosa
    • 3
    • 4
  • Cristina Rodríguez Pereira
    • 5
  • Joana Magalhaes
    • 1
    • 5
  • José A. Andrades
    • 6
    • 1
  • Josep Samitier
    • 2
    • 1
    • 7
  1. 1.Networking Biomedical Research Center (CIBER)MadridSpain
  2. 2.Institute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  3. 3.Instituto de Investigación Biomédica de Málaga (IBIMA), Department of Organic ChemistryUniversidad de Málaga (UMA)MálagaSpain
  4. 4.Andalusian Centre for Nanomedicine and Biotechnology-BIONANDParque Tecnológico de AndalucíaMálagaSpain
  5. 5.Unidad de Bioingeniería Tisular y Terapia Celular (GBTTC-CHUAC), Grupo de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SergasUniversidade da Coruña (UDC)CoruñaSpain
  6. 6.Cell Biology, Genetics and Physiology DepartmentUniversity de Málaga (UMA), Campus TeatinosMálagaSpain
  7. 7.Department of Engineering ElectronicsUniversity of Barcelona (UB)BarcelonaSpain

Personalised recommendations