Skip to main content
Log in

Spontaneous twisting of a collapsed carbon nanotube

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript


We study the collapsing and subsequent spontaneous twisting of a carbon nanotube by in situ transmission electron microscopy (TEM). A custom-sized nanotube is first created in the microscope by selectively extracting shells from a parent multi-walled tube. The few-walled, large-diameter daughter nanotube is driven to collapse via mechanical stimulation, after which the ribbon-like collapsed tube spontaneously twists along its long axis. In situ diffraction experiments fully characterize the uncollapsed and collapsed tubes. The experimental observations and associated theoretical analysis indicate that the origin of the twisting is compressive strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Chopra, N. G.; Benedict, L. X.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Fully collapsed carbon nanotubes. Nature 1995, 377, 135–138.

    Article  Google Scholar 

  2. Lu, J. Q.; Wu, J.; Duan, W. H.; Liu, F.; Zhu, B. F.; Gu, B. L. Metal-to-semiconductor transition in squashed armchair carbon nanotubes. Phys. Rev. Lett. 2003, 90, 156601.

    Article  Google Scholar 

  3. Giusca, C. E.; Tison, Y.; Silva, S. R. P. Evidence for metalsemiconductor transitions in twisted and collapsed doublewalled carbon nanotubes by scanning tunneling microscopy. Nano Lett. 2008, 8, 3350–3356.

    Article  Google Scholar 

  4. Lopez-Bezanilla, A.; Campos-Delgado, J.; Sumpter, B. G.; Baptista, D. L.; Hayashi, T.; Kim, Y. A.; Muramatsu, H.; Endo, M.; Achete, C. A.; Terrones, M. et al. Geometric and electronic structure of closed graphene edges. J. Phys. Chem. Lett. 2012, 3, 2097–2102.

    Article  Google Scholar 

  5. Shklyaev, O. E.; Mockensturm, E.; Crespi, V. H. Modeling electrostatically induced collapse transitions in carbon nanotubes. Phys. Rev. Lett. 2011, 106, 155501.

    Article  Google Scholar 

  6. Benedict, L. X.; Chopra, N. G.; Cohen, M. L.; Zettl, A.; Louie, S. G.; Crespi, V. H. Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 1998, 286, 490–496.

    Article  Google Scholar 

  7. Gao, G. H.; Ç agin, T.; Goddard, W. A., III. Energetics, structure, mechanical and vibrational properties of singlewalled carbon nanotubes. Nanotechnology 1998, 9, 184–191.

    Article  Google Scholar 

  8. Elliott, J. A.; Sandler, J. K. W.; Windle, A. H.; Young, R. J.; Shaffer, M. S. P. Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 2004, 92, 095501.

    Article  Google Scholar 

  9. Zhang, S. L.; Khare, R.; Belytschko, T.; Hsia, K. J.; Mielke, S. L.; Schatz, G. C. Transition states and minimum energy pathways for the collapse of carbon nanotubes. Phys. Rev. B 2006, 73, 075423.

    Article  Google Scholar 

  10. Liu, H. J.; Cho, K. A molecular dynamics study of round and flattened carbon nanotube structures. Appl. Phys. Lett. 2004, 85, 807–809.

    Article  Google Scholar 

  11. Gómez-Navarro, C.; Sáenz, J. J.; Gómez-Herrero, J. Conductance oscillations in squashed carbon nanotubes. Phys. Rev. Lett. 2006, 96, 076803.

    Article  Google Scholar 

  12. Yu, M. F.; Dyer, M. J.; Chen, J.; Qian, D.; Liu, W. K.; Ruoff, R. S. Locked twist in multiwalled carbon-nanotube ribbons. Phys. Rev. B 2001, 64, 241403.

    Article  Google Scholar 

  13. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Article  Google Scholar 

  14. Liu, B.; Yu, M. F.; Huang, Y. G. Role of lattice registry in the full collapse and twist formation of carbon nanotubes. Phys. Rev. B 2004, 70, 161402.

    Article  Google Scholar 

  15. Xiao, J.; Liu, B.; Huang, Y.; Zuo, J.; Hwang, K. C.; Yu, M. F. Collapse and stability of single- and multi-wall carbon nanotubes. Nanotechnology 2007, 18, 395703.

    Article  Google Scholar 

  16. Zhang, D.-B.; Dumitrica, T. Effective strain in helical rippled carbon nanotubes: A unifying concept for understanding electromechanical response. ACS Nano 2010, 4, 6966–6972.

    Article  Google Scholar 

  17. Bets, K. V.; Yakobson, B. I. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2009, 2, 161–166.

    Article  Google Scholar 

  18. Shenoy, V. B.; Reddy, C. D.; Ramasubramaniam, A.; Zhang, Y. W. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008, 101, 245501.

    Article  Google Scholar 

  19. Dontsova, E.; Dumitrica, T. Nanomechanics of twisted mono- and few-layer graphene nanoribbons. J. Phys. Chem. Lett. 2013, 4, 2010–2014.

    Article  Google Scholar 

  20. Liu, X. Y.; Wang, F. C.; Wu, H. A. Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons. Phys. Chem. Chem. Phys. 2015, 17, 31911–31916.

    Article  Google Scholar 

  21. Barzegar, H. R.; Gracia-Espino, E.; Yan, A. M.; Ojeda-Aristizabal, C.; Dunn, G.; Wagberg, T.; Zettl, A. C60/collapsed carbon nanotube hybrids: A variant of peapods. Nano Lett. 2015, 15, 829–834.

    Article  Google Scholar 

  22. Barzegar, H. R.; Yan, A. M.; Coh, S.; Gracia-Espino, E.; Dunn, G.; Wågberg, T.; Louie, S. G.; Cohen, M. L.; Zettl, A. Electrostatically driven nanoballoon actuator. Nano Lett. 2016, 16, 6787–6791.

    Article  Google Scholar 

  23. Senga, R.; Hirahara, K.; Nakayama, Y. Nanotorsional actuator using transition between flattened and tubular states in carbon nanotubes. Appl. Phys. Lett. 2012, 100, 083110.

    Article  Google Scholar 

  24. Cumings, J.; Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 2000, 289, 602–604.

    Article  Google Scholar 

  25. Qin, L. C. Electron diffraction from carbon nanotubes. Rep. Prog. Phys. 2006, 69, 2761–2821.

    Article  Google Scholar 

  26. Malik, A. S.; Grandhi, R. V. A computational method to predict strip profile in rolling mills. J. Mater. Process. Technol. 2008, 206, 263–274.

    Article  Google Scholar 

  27. Wang, X. D.; Yang, Q.; He, A. R. Calculation of thermal stress affecting strip flatness change during run-out table cooling in hot steel strip rolling. J. Mater. Process. Technol. 2008, 207, 130–146.

    Article  Google Scholar 

  28. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

    Google Scholar 

  29. Kumar, S.; Hembram, K. P. S. S.; Waghmare, U. V. Intrinsic buckling strength of graphene: First-principles density functional theory calculations. Phys. Rev. B 2010, 82, 115411.

    Article  Google Scholar 

  30. Gazit, D. Theory of the spontaneous buckling of doped graphene. Phys. Rev. B 2009, 79, 113411.

    Article  Google Scholar 

  31. Yakobson, B. I.; Avouris, P. Mechanical properties of carbon nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P., Eds.; Springer-Verlag: Berlin, Heidelberg, 2001, pp 287–327.

    Chapter  Google Scholar 

  32. Akatyeva, E.; Dumitrica, T. Chiral graphene nanoribbons: Objective molecular dynamics simulations and phase-transition modeling. J. Chem. Phys. 2012, 137, 234702.

    Article  Google Scholar 

  33. Chan, C. T.; Kamitakahara, W. A.; Ho, K. M.; Eklund, P. C. Charge-transfer effects in graphite intercalates: Ab initio calculations and neutron-diffraction experiment. Phys. Rev. Lett. 1987, 58, 1528–1531.

    Article  Google Scholar 

  34. Charlier, J. C. Defects in carbon nanotubes. Acc. Chem. Res. 2002, 35, 1063–1069.

    Article  Google Scholar 

  35. Barzegar, H. R.; Gracia-Espino, E.; Sharifi, T.; Nitze, F.; Wågberg, T. Nitrogen doping mechanism in small diameter single-walled carbon nanotubes: Impact on electronic properties and growth selectivity. J. Phys. Chem. C 2013, 117, 25805–25816.

    Article  Google Scholar 

Download references


This work was supported in part by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract #DE-AC02-05CH11231, within the Nanomachines Program (KC1203), which provided support for TEM characterization and the continuum model calculation; by the Office of Naval Research under contract N00014-16-1-2229 which provided support for collapsed nanoribbon synthesis; by the National Science Foundation under grant DMR- 1508412 which provided for total energy calculations, and by the Swedish Research Council (grant dnr 2015-00520) which provided support for HRB. Computational resources have been provided by the NSF through XSEDE resources at NICS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alex Zettl.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar, H.R., Yan, A., Coh, S. et al. Spontaneous twisting of a collapsed carbon nanotube. Nano Res. 10, 1942–1949 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: