Advertisement

Nano Research

, Volume 10, Issue 6, pp 1924–1931 | Cite as

Atomic origin of the traps in memristive interface

  • Ye Tian
  • Lida Pan
  • Chuan Fei Guo
  • Qian LiuEmail author
Research Article

Abstract

In recent years, trap-related interfacial transport phenomena have received great attention owing to their potential applications in resistive switching devices and photo detectors. Not long ago, one new type of memristive interface that is composed of F-doped SnO2 and Bi2S3 nano-network layers has demonstrated a bivariate-continuous-tunable resistance with a swift response comparable to the one in neuron synapses and with a brain-like memorizing capability. However, the resistive mechanism is still not clearly understood because of lack of evidence, and the limited improvement in the development of the interfacial device. By combining IV characterization, electron energy-loss spectroscopy, and first-principle calculation, we studied in detail the macro/micro features of the memristive interface using experimental and theoretical methods, and confirmed that its atomic origin is attributed to the traps induced by O-doping. This implies that impurity-doping might be an effective strategy for improving switching features and building new interfacial memristors.

Keywords

memristance interface trap state first principle calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Key Research Program of China (No. 2016YFA0200403), National Natural Science Foundation of China (Nos. 10974037 and 11547163), the CAS Strategy Pilot program (No. XAD 09020300), Hunan Provincial Natural Science Foundation of China (No. 2015JJ6015) and Science and technology project of Yiyang (No. 2015JZ29). Y. T. thanks for the fellowship from the China Scholarship Council (CSC, No. 201508430266).

Supplementary material

12274_2016_1376_MOESM1_ESM.pdf (1.7 mb)
Atomic origin of the traps in memristive interface

References

  1. [1]
    Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.CrossRefGoogle Scholar
  2. [2]
    Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.CrossRefGoogle Scholar
  3. [3]
    Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.CrossRefGoogle Scholar
  4. [4]
    Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R: Rep. 2014, 83, 1–59.CrossRefGoogle Scholar
  5. [5]
    Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.CrossRefGoogle Scholar
  6. [6]
    Tian, Y.; Guo, C. F.; Guo, S. M.; Yu, T. F.; Liu, Q. Bivariate-continuous-tunable interface memristor based on Bi2S3 nested nano-networks. Nano Res. 2014, 7, 953–962.CrossRefGoogle Scholar
  7. [7]
    Tian, Y.; Zhang, J. M.; Guo, C. F.; Zhang, B. S.; Liu, Q. Photoconductive probing of the trap distribution in switchable interfaces. Nanoscale 2016, 8, 915–920.CrossRefGoogle Scholar
  8. [8]
    Liu, Q.; Guan, W. H.; Long, S. B.; Jia, R.; Liu, M.; Chen, J. N. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 2008, 92, 012117.CrossRefGoogle Scholar
  9. [9]
    Wu, X.; Zhou, P.; Li, J.; Chen, L. Y.; Lv, H. B.; Lin, Y. Y.; Tang, T. A. Reproducible unipolar resistance switching in stoichiometric ZrO2 films. Appl. Phys. Lett. 2007, 90, 183507.CrossRefGoogle Scholar
  10. [10]
    Gao, S.; Song, C.; Chen, C.; Zeng, F.; Pan, F. Dynamic processes of resistive switching in metallic filament-based organic memory devices. J. Phys. Chem. C 2012, 116, 17955–17959.CrossRefGoogle Scholar
  11. [11]
    Peng, S. S.; Zhuge, F.; Chen, X. X.; Zhu, X. J.; Hu, B. L.; Pan, L.; Chen, B.; Li, R.-W. Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Appl. Phys. Lett. 2012, 100, 072101.CrossRefGoogle Scholar
  12. [12]
    Yu, Z. H.; Guo, L.; Du, H.; Krauss, T.; Silcox, J. Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett. 2005, 5, 565–570.CrossRefGoogle Scholar
  13. [13]
    Wang, M.; Wang, C.; Tian, Y.; Zhang, J. M.; Guo, C. F.; Zhang, X. Z.; Liu, Q. Study on optical and electric properties of ultrafine-grained indium films. Appl. Surf. Sci. 2014, 296, 209–213.CrossRefGoogle Scholar
  14. [14]
    Guo, C. F.; Zhang, J. M.; Tian, Y.; Liu, Q. A general strategy to superstructured networks and nested self-similar networks of bismuth compounds. ACS Nano 2012, 6, 8746–8752.CrossRefGoogle Scholar
  15. [15]
    Tian, Y.; Guo, C. F.; Guo, Y. J.; Wang, Q.; Liu, Q. BiOCl nanowire with hierarchical structure and its Raman features. Appl. Surf. Sci. 2012, 258, 1949–1954.CrossRefGoogle Scholar
  16. [16]
    Tian, Y.; Guo, C. F.; Zhang, J. M.; Liu, Q. Operable persistent photoconductivity of Bi2S3 nested nano networks. Phys. Chem. Chem. Phys. 2015, 17, 851–857.CrossRefGoogle Scholar
  17. [17]
    Ahire, R. R.; Sankapal, B. R.; Lokhande, C. D. Preparation and characterization of Bi2S3 thin films using modified chemical bath deposition method. Mater. Res. Bull. 2001, 36, 199–210.CrossRefGoogle Scholar
  18. [18]
    Lo, C. C.; Hsieh, T. E. The influences of oxygen incorporation on the defect trap states of a-IGZO thin-film transistors. ECS Trans. 2012, 45, 239–243.CrossRefGoogle Scholar
  19. [19]
    Ji, W. Y.; Jing, P. T.; Xu, W.; Yuan, X.; Wang, Y. J.; Zhao, J. L.; Jen, A. K.-Y. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure. Appl. Phys. Lett. 2013, 103, 053106.CrossRefGoogle Scholar
  20. [20]
    Na-Phattalung, S.; Smith, M. F.; Kim, K.; Du, M.-H.; Wei, S.-H.; Zhang, S. B.; Limpijumnong, S. First-principles study of native defects in anatase TiO2. Phys. Rev. B 2006, 73, 125205.CrossRefGoogle Scholar
  21. [21]
    Xiao, H. B.; Yang, C. P.; Huang, C.; Xu, L. F.; Shi, D. W.; Marchenkov, V. V.; Medvedeva, I. V.; Bärner, K. Influence of oxygen vacancy on the electronic structure of CaCu3Ti4O12 and its deep-level vacancy trap states by first-principle calculation. J. Appl. Phys. 2012, 111, 063713.CrossRefGoogle Scholar
  22. [22]
    Monthus, C. Localization properties of the anomalous diffusion phase in the directed trap model and in the Sinai diffusion with a bias. Phys. Rev. E 2003, 67, 046109.CrossRefGoogle Scholar
  23. [23]
    Liu, E. K.; Zhu, B. S.; Luo, J. S. Semiconductor Physics, 6th ed.; Publishing House of Electronics Industry: Beijing, 2003.Google Scholar
  24. [24]
    Lampert, M. A.; Mark, P. Current Injection in Solids; Academic Press: New York, 1970.Google Scholar
  25. [25]
    Ge, Z.-H.; Zhang, B.-P.; Shang, P.-P.; Yu, Y.-Q.; Chen, C.; Li, J.-F. Enhancing thermoelectric properties of polycrystalline Bi2S3 by optimizing a ball-milling process. J. Electron. Mater. 2011, 40, 1087–1094.CrossRefGoogle Scholar
  26. [26]
    Sun, B.; Zhao, W. X.; Liu, Y. H.; Chen, P. Resistive switching effect of Ag/MoS2/FTO device. Funct. Mater. Lett. 2015, 8, 1550010.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ye Tian
    • 1
    • 2
    • 5
  • Lida Pan
    • 3
    • 4
  • Chuan Fei Guo
    • 6
  • Qian Liu
    • 1
    Email author
  1. 1.CAS Center of Excellence for Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijingChina
  2. 2.School of Communication and Electronics EngineeringHunan City UniversityYiyangChina
  3. 3.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA
  4. 4.Institute of PhysicsChinese Academy of SciencesBeijingChina
  5. 5.Photonics Research Group, Department of Information TechnologyGhent University-IMECGhentBelgium
  6. 6.Department of Materials Science and EngineeringSouth University of Science and Technology of ChinaShenzhenChina

Personalised recommendations