Advertisement

Nano Research

, Volume 10, Issue 6, pp 1880–1887 | Cite as

Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors

  • Yujie Liu
  • Yuanda Liu
  • Shuchao Qin
  • Yongbing Xu
  • Rong Zhang
  • Fengqiu WangEmail author
Research Article

Abstract

Graphene is being actively explored as a candidate material for flexible and stretchable devices. However, the development of graphene-based flexible photonic devices, i.e. photodetectors, is hindered by the low absorbance of the single layer of carbon atoms. Recently, van der Waals bonded carbon nanotube and graphene hybrid films have demonstrated excellent photoresponsivity, and the use of vein-like carbon nanotube networks resulted in significantly higher mechanical strength. Here, we report for the first time, a flexible photodetector with a high photoresponsivity of ~ 51 A/W and a fast response time of ~ 40 ms over the visible range, revealing the unique potential of this emerging all-carbon hybrid films for flexible devices. In addition, the device exhibits good robustness against repetitive bending, suggesting its applicability in large-area matrix-array flexible photodetectors.

Keywords

graphene carbon nanotube van der Waals heterostructures flexible photodetector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported in part by the National Basic Research Program of China (No. 2014CB921101); the National Natural Science Foundation of China (Nos. 61378025, 61427812, 61274102, and 61504056); Jiangsu Province Shuangchuang Team Program. Y. D. L. acknowledges funding of International Postdoctoral Exchange Fellowship Program (No. 20150023), the China Postdoctoral Science Foundation (No. 2014M551558) and Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402028B).

References

  1. [1]
    Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341–350.CrossRefGoogle Scholar
  2. [2]
    Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.CrossRefGoogle Scholar
  3. [3]
    Meunier, V.; Souza Filho, A. G.; Barros, E. B.; Dresselhaus, M. S. Physical properties of low-dimensional sp2-based carbon nanostructures. Rev. Mod. Phys. 2016, 88, 025005.CrossRefGoogle Scholar
  4. [4]
    Itkis, M. E.; Niyogi, S.; Meng, M. E.; Hamon, M. A.; Hu, H.; Haddon, R. C. Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes. Nano Lett. 2002, 2, 155–159.CrossRefGoogle Scholar
  5. [5]
    Falvo, M. R.; Clary, G. J.; Taylor, R. M., 2nd.; Chi, V.; Brooks, F. P., Jr.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582–584.CrossRefGoogle Scholar
  6. [6]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  7. [7]
    Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.CrossRefGoogle Scholar
  8. [8]
    Zhang, X. B.; Yu, Z. B.; Wang, C.; Zarrouk, D.; Seo, J. W. T.; Cheng, J. C.; Buchan, A. D.; Takei, K.; Zhao, Y.; Ager, J. W. et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 2983.Google Scholar
  9. [9]
    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  10. [10]
    van der Zande, A. M.; Barton, R. A.; Alden, J. S.; Ruiz-Vargas, C. S.; Whitney, W. S.; Pham, P. H. Q.; Park, J.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Large-scale arrays of single-layer graphene resonators. Nano Lett. 2010, 10, 4869–4873.CrossRefGoogle Scholar
  11. [11]
    Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.CrossRefGoogle Scholar
  12. [12]
    Buldum, A.; Lu, J. P. Contact resistance between carbon nanotubes. Phys. Rev. B 2001, 63, 161403.CrossRefGoogle Scholar
  13. [13]
    Nirmalraj, P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.CrossRefGoogle Scholar
  14. [14]
    Lyons, P. E.; De, S.; Blighe, F.; Nicolosi, V.; Pereira, L. F. C.; Ferreira, M. S.; Coleman, J. N. The relationship between network morphology and conductivity in nanotube films. J. Appl. Phys. 2008, 104, 044302.CrossRefGoogle Scholar
  15. [15]
    Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.CrossRefGoogle Scholar
  16. [16]
    Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended singlewalled carbon nanotube films. Science 2006, 312, 413–416.CrossRefGoogle Scholar
  17. [17]
    Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.CrossRefGoogle Scholar
  18. [18]
    Koppens, F. H. L.; Mueller, T.; Avouris, P., Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.CrossRefGoogle Scholar
  19. [19]
    Lv, R. T.; Cruz-Silva, E.; Terrones, M. Building complex hybrid carbon architectures by covalent interconnections: Graphene-nanotube hybrids and more. ACS Nano 2014, 8, 4061–4069.CrossRefGoogle Scholar
  20. [20]
    Yan, Z.; Peng, Z. W.; Casillas, G.; Lin, J.; Xiang, C. S.; Zhou, H. Q.; Yang, Y.; Ruan, G. D.; Raji, A.-R. O.; Samuel, E. L. G. et al. Rebar graphene. ACS Nano 2014, 8, 5061–5068.CrossRefGoogle Scholar
  21. [21]
    Li, X. L.; Sha, J. W.; Lee, S. K.; Li, Y. L.; Ji, Y. S.; Zhao, Y. J.; Tour, J. M. Rivet graphene. ACS Nano 2016, 10, 7307–7313.CrossRefGoogle Scholar
  22. [22]
    Lin, X. Y.; Liu, P.; Wei, Y.; Li, Q. Q.; Wang, J. P.; Wu, Y.; Feng, C.; Zhang, L. N.; Fan, S. S.; Jiang, K. L. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nat. Commun. 2013, 4, 2920.Google Scholar
  23. [23]
    Liu, Y. D.; Wang, F. Q.; Wang, X. M.; Wang, X. Z.; Flahaut, E.; Liu, X. L.; Li, Y.; Wang, X. R.; Xu, Y. B.; Shi, Y. et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 2015, 6, 8589.CrossRefGoogle Scholar
  24. [24]
    Shi, J. D.; Li, X. M.; Cheng, H. Y.; Liu, Z. J.; Zhao, L. Y.; Yang, T. T.; Dai, Z. H.; Cheng, Z. G.; Shi, E. Z.; Yang, L. et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 2016, 26, 2078–2084.CrossRefGoogle Scholar
  25. [25]
    Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.CrossRefGoogle Scholar
  26. [26]
    Liu, Y. D.; Wang, F. Q.; Liu, Y. J.; Wang, X. Z.; Xu, Y. B.; Zhang, R. Charge transfer at carbon nanotube-graphene van der Waals heterojunctions. Nanoscale 2016, 8, 12883–12886.CrossRefGoogle Scholar
  27. [27]
    Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675–684.CrossRefGoogle Scholar
  28. [28]
    Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.CrossRefGoogle Scholar
  29. [29]
    Wang, K.; Wu, H. P.; Meng, Y. N.; Zhang, Y. J.; Wei, Z. X. Integrated energy storage and electrochromic function in one flexible device: An energy storage smart window. Energy Environ. Sci. 2012, 5, 8384–8389.CrossRefGoogle Scholar
  30. [30]
    Yeh, M. H.; Lin, L.; Yang, P.-K.; Wang, Z. L. Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 2015, 9, 4757–4765.CrossRefGoogle Scholar
  31. [31]
    Kim, D.-H.; Lu, N. S.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.CrossRefGoogle Scholar
  32. [32]
    Liang, Y.; Wang, Z.; Huang, J.; Cheng, H. H.; Zhao, F.; Hu, Y.; Jiang, L.; Qu, L. T. Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 2015, 3, 2547–2551.CrossRefGoogle Scholar
  33. [33]
    Nathan, A.; Ahnood, A.; Cole, M. T.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A.; Haque, S. et al. Flexible electronics: The next ubiquitous platform. Proc. IEEE 2012, 100, 1486–1517.CrossRefGoogle Scholar
  34. [34]
    Kholmanov, I. N.; Magnuson, C. W.; Piner, R.; Kim, J. Y.; Aliev, A. E.; Tan, C.; Kim, T. Y.; Zakhidov, A. A.; Sberveglieri, G.; Baughman, R. H. et al. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv. Mater. 2015, 27, 3053–3059.CrossRefGoogle Scholar
  35. [35]
    Xiao, L.; Ma, H.; Liu, J. K.; Zhao, W.; Jia, Y.; Zhao, Q.; Liu, K.; Wu, Y.; Wei, Y.; Fan, S. S. et al. Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films. Nano Lett. 2015, 15, 8365–8370.CrossRefGoogle Scholar
  36. [36]
    Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.CrossRefGoogle Scholar
  37. [37]
    Sun, Z. H.; Chang, H. X. Graphene and graphene-like twodimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133–4156.CrossRefGoogle Scholar
  38. [38]
    Liu, Y. L.; Yu, C. C.; Lin, K. T.; Yang, T. C.; Wang, E. Y.; Chen, H. L.; Chen, L. C.; Chen, K. H. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene-gold oxide heterojunction. ACS Nano 2015, 9, 5093–5103.CrossRefGoogle Scholar
  39. [39]
    Withers, F.; Yang, H.; Britnell, L.; Rooney, A. P.; Lewis, E.; Felten, A.; Woods, C. R.; Romaguera, V. S.; Georgiou, T.; Eckmann, A. et al. Heterostructures produced from nanosheetbased inks. Nano Lett. 2014, 14, 3987–3992.CrossRefGoogle Scholar
  40. [40]
    Finn, D. J.; Lotya, M.; Cunningham, G.; Smith, R. J.; McCloskey, D.; Donegan, J. F.; Coleman, J. N. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2014, 2, 925–932.CrossRefGoogle Scholar
  41. [41]
    Amani, M.; Burke, R. A.; Proie, R. M.; Dubey, M. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology 2015, 26, 115202.CrossRefGoogle Scholar
  42. [42]
    De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.CrossRefGoogle Scholar
  43. [43]
    Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.CrossRefGoogle Scholar
  44. [44]
    Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. N. Large-area, transparent, and flexible infrared photodetector fabricated using p–n junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014, 14, 3702–3708.CrossRefGoogle Scholar
  45. [45]
    Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.CrossRefGoogle Scholar
  46. [46]
    Son, D. I.; Yang, H. Y.; Kim, T. W.; Park, W. I. Transparent and flexible ultraviolet photodetectors based on colloidal ZnO quantum dot/graphene nanocomposites formed on poly(ethylene terephthalate) substrates. Compos. Part B: Eng. 2015, 69, 154–158.CrossRefGoogle Scholar
  47. [47]
    Chen, G.; Liang, B.; Liu, Z.; Yu, G.; Xie, X. M.; Luo, T.; Xie, Z.; Chen, D.; Zhu, M.-Q.; Shen, G. Z. High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays. J. Mater. Chem. C 2014, 2, 1270–1277.CrossRefGoogle Scholar
  48. [48]
    Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653–8661.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yujie Liu
    • 1
  • Yuanda Liu
    • 1
  • Shuchao Qin
    • 1
  • Yongbing Xu
    • 1
  • Rong Zhang
    • 1
  • Fengqiu Wang
    • 1
    Email author
  1. 1.School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations