Skip to main content

Broadband photovoltaic effect of n-type topological insulator Bi2Te3 films on p-type Si substrates

Abstract

We report the photovoltaic effects of n-type topological insulator (TI) Bi2Te3 films grown on p-type Si substrates by chemical vapor deposition (CVD). The films containing large nanoplates with a smooth surface formed on p-Si exhibit good p–n diode characteristics under dark and light illumination conditions and display a good photovoltaic effect under the broadband range from ultraviolet (UV) to near infrared (NIR) wavelengths. Under the light illumination with a wavelength of 1,000 nm, a short circuit current (I SC) of 19.2 μA and an open circuit voltage (V OC) of 235 mV are achieved. The maximum fill factor (FF) increases with a decrease in the wavelength or light density, achieving a value of 35.6% under 600 nm illumination. The photoresponse of the n-Bi2Te3/p-Si device can be effectively switched between the on and off modes in millisecond time scale. These findings are important for both the fundamental understanding and solar cell device applications of TI materials.

This is a preview of subscription content, access via your institution.

References

  1. Jalali, B.; Fathpour, S. Silicon photonics. J. Lightwave Technol. 2006, 24, 4600–4615.

    Article  Google Scholar 

  2. Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agrait, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.

    Article  Google Scholar 

  3. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  4. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Snan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    Article  Google Scholar 

  5. Sucharitakul, S.; Goble, N. J.; Kumar, U. R.; Sankar, R.; Bogorad, Z. A.; Chou, F. C.; Chen, Y. T.; Gao, X. P. A. Intrinsic electron mobility exceeding 103 cm2/(V·s) in multilayer InSe FETs. Nano Lett. 2015, 15, 3815–3819.

    Article  Google Scholar 

  6. Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    Article  Google Scholar 

  7. Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

    Article  Google Scholar 

  8. Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photo thermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358–363.

    Article  Google Scholar 

  9. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  10. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  11. Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 2010, 4, 297–301.

    Article  Google Scholar 

  12. Xia, F. N.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y. M.; Tsang, J.; Perebeinos, V.; Avouris, P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 2009, 9, 1039–1044.

    Article  Google Scholar 

  13. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    Article  Google Scholar 

  14. Zhang, W.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.

    Article  Google Scholar 

  15. Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

    Article  Google Scholar 

  16. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  17. Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 2014, 8, 8292–8299.

    Article  Google Scholar 

  18. Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317–8322.

    Article  Google Scholar 

  19. Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.

    Article  Google Scholar 

  20. Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 2014, 9, 257–261.

    Article  Google Scholar 

  21. Groenendijk, D. J.; Buscema, M.; Steele, G. A.; de Vasconcellos, S. M.; Bratschitsch, R.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 2014, 14, 5846–5852.

    Article  Google Scholar 

  22. Zhang, H. B.; Zhang, X. J.; Liu, C.; Lee, S. T.; Jie, J. S. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano 2016, 10, 5113–5122.

    Article  Google Scholar 

  23. Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.

    Article  Google Scholar 

  24. Wang, K.; Liu, Y. W.; Wang, W. Y.; Meyer, N.; Bao, L. H.; He, L.; Lang, M. R.; Chen, Z. G.; Che, X. Y.; Post, K. et al. High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications. Appl. Phys. Lett. 2013, 103, 031605.

    Article  Google Scholar 

  25. Fu, L.; Kane, C. L.; Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803.

    Article  Google Scholar 

  26. Moore, J. E.; Balents, L. Topological invariants of timereversal- invariant band structures. Phys. Rev. B 2007, 75, 121306.

    Article  Google Scholar 

  27. Thomas, G. A.; Rapkine, D. H.; Van Dover, R. B.; Mattheiss, L. F.; Sunder, W. A.; Schneemeyer, L. F.; Waszczak, J. V. Large electronic-density increase on cooling a layered metal: Doped Bi2Te3. Phys. Rev. B 1992, 46, 1553–1556.

    Article  Google Scholar 

  28. Lin, Y. H.; Lin, S. F.; Chi, Y. C.; Wu, C. L.; Cheng, C. H.; Tseng, W. H.; He, J. H.; Wu, C. I.; Lee, C. K.; Lin, G. R. Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photonics 2015, 2, 481–490.

    Article  Google Scholar 

  29. Wang, Z. H.; Yang, L.; Li, X. J.; Zhao, X. T.; Wang, H. L.; Zhang, Z. D.; Gao, X. P. A. Granularity controlled nonsaturating linear magnetoresistance in topological insulator Bi2Te3 films. Nano Lett. 2014, 14, 6510–6514.

    Article  Google Scholar 

  30. Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z. D.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1–x Sex)3 nanoribbons. ACS Nano 2013, 7, 2126–2131.

    Article  Google Scholar 

  31. Yao, J. D.; Shao, J. M.; Wang, Y. X.; Zhao, Z. R.; Yang, G. W. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541.

    Article  Google Scholar 

  32. Haneman, D. Photoelectric emission and work functions of InSb, GaAs, Bi2Te3 and germanium. J. Phys. Chem. Solids 1959, 11, 205–214.

    Article  Google Scholar 

  33. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

    Article  Google Scholar 

  34. Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165–6170.

    Article  Google Scholar 

  35. Mukhopadhyay, K.; Mukhopadhyay, I.; Sharon, M.; Soga, T.; Umeno, M. Carbon photovoltaic cell. Carbon 1997, 35, 863–864.

    Article  Google Scholar 

  36. Jia, Y.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Shu, Q. K.; Gui, X. C.; Zhu, Y. Q.; Zhuang, D. M.; Zhang, G.; Ma, B. B. et al. Nanotube-silicon heterojunction solar cells. Adv. Mater. 2008, 20, 4594–4598.

    Article  Google Scholar 

Download references

Acknowledgements

Z. H. W. acknowledges the National Natural Science Foundation of China (No. 51522104). X. P. A. G. acknowledges the NSF CAREER Award program (No. DMR-1151534) for financial support of research at CWRU. Z. D. Z. acknowledges the National Natural Science Foundation of China (Nos. 51590883, 51331006 and KJZD-EW-M05-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhidong Zhang or Xuan P. A. Gao.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, M., Yang, L. et al. Broadband photovoltaic effect of n-type topological insulator Bi2Te3 films on p-type Si substrates. Nano Res. 10, 1872–1879 (2017). https://doi.org/10.1007/s12274-016-1369-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1369-2

Keywords

  • photovoltaic effect
  • topological insulators
  • Bi2Te3/Si
  • film