Nano Research

, Volume 10, Issue 6, pp 1872–1879 | Cite as

Broadband photovoltaic effect of n-type topological insulator Bi2Te3 films on p-type Si substrates

Research Article

Abstract

We report the photovoltaic effects of n-type topological insulator (TI) Bi2Te3 films grown on p-type Si substrates by chemical vapor deposition (CVD). The films containing large nanoplates with a smooth surface formed on p-Si exhibit good p–n diode characteristics under dark and light illumination conditions and display a good photovoltaic effect under the broadband range from ultraviolet (UV) to near infrared (NIR) wavelengths. Under the light illumination with a wavelength of 1,000 nm, a short circuit current (ISC) of 19.2 μA and an open circuit voltage (VOC) of 235 mV are achieved. The maximum fill factor (FF) increases with a decrease in the wavelength or light density, achieving a value of 35.6% under 600 nm illumination. The photoresponse of the n-Bi2Te3/p-Si device can be effectively switched between the on and off modes in millisecond time scale. These findings are important for both the fundamental understanding and solar cell device applications of TI materials.

Keywords

photovoltaic effect topological insulators Bi2Te3/Si film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1369_MOESM1_ESM.pdf (2.7 mb)
Broadband photovoltaic effect of n-type topological insulator Bi2Te3 films on p-type Si substrates

References

  1. [1]
    Jalali, B.; Fathpour, S. Silicon photonics. J. Lightwave Technol. 2006, 24, 4600–4615.CrossRefGoogle Scholar
  2. [2]
    Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agrait, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.CrossRefGoogle Scholar
  3. [3]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  4. [4]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Snan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  5. [5]
    Sucharitakul, S.; Goble, N. J.; Kumar, U. R.; Sankar, R.; Bogorad, Z. A.; Chou, F. C.; Chen, Y. T.; Gao, X. P. A. Intrinsic electron mobility exceeding 103 cm2/(V·s) in multilayer InSe FETs. Nano Lett. 2015, 15, 3815–3819.CrossRefGoogle Scholar
  6. [6]
    Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.CrossRefGoogle Scholar
  7. [7]
    Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.CrossRefGoogle Scholar
  8. [8]
    Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photo thermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358–363.CrossRefGoogle Scholar
  9. [9]
    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  10. [10]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  11. [11]
    Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 2010, 4, 297–301.CrossRefGoogle Scholar
  12. [12]
    Xia, F. N.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y. M.; Tsang, J.; Perebeinos, V.; Avouris, P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 2009, 9, 1039–1044.CrossRefGoogle Scholar
  13. [13]
    Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.CrossRefGoogle Scholar
  14. [14]
    Zhang, W.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.CrossRefGoogle Scholar
  15. [15]
    Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.CrossRefGoogle Scholar
  16. [16]
    Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.CrossRefGoogle Scholar
  17. [17]
    Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 2014, 8, 8292–8299.CrossRefGoogle Scholar
  18. [18]
    Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317–8322.CrossRefGoogle Scholar
  19. [19]
    Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.CrossRefGoogle Scholar
  20. [20]
    Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 2014, 9, 257–261.CrossRefGoogle Scholar
  21. [21]
    Groenendijk, D. J.; Buscema, M.; Steele, G. A.; de Vasconcellos, S. M.; Bratschitsch, R.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 2014, 14, 5846–5852.CrossRefGoogle Scholar
  22. [22]
    Zhang, H. B.; Zhang, X. J.; Liu, C.; Lee, S. T.; Jie, J. S. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano 2016, 10, 5113–5122.CrossRefGoogle Scholar
  23. [23]
    Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.CrossRefGoogle Scholar
  24. [24]
    Wang, K.; Liu, Y. W.; Wang, W. Y.; Meyer, N.; Bao, L. H.; He, L.; Lang, M. R.; Chen, Z. G.; Che, X. Y.; Post, K. et al. High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications. Appl. Phys. Lett. 2013, 103, 031605.CrossRefGoogle Scholar
  25. [25]
    Fu, L.; Kane, C. L.; Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803.CrossRefGoogle Scholar
  26. [26]
    Moore, J. E.; Balents, L. Topological invariants of timereversal- invariant band structures. Phys. Rev. B 2007, 75, 121306.CrossRefGoogle Scholar
  27. [27]
    Thomas, G. A.; Rapkine, D. H.; Van Dover, R. B.; Mattheiss, L. F.; Sunder, W. A.; Schneemeyer, L. F.; Waszczak, J. V. Large electronic-density increase on cooling a layered metal: Doped Bi2Te3. Phys. Rev. B 1992, 46, 1553–1556.CrossRefGoogle Scholar
  28. [28]
    Lin, Y. H.; Lin, S. F.; Chi, Y. C.; Wu, C. L.; Cheng, C. H.; Tseng, W. H.; He, J. H.; Wu, C. I.; Lee, C. K.; Lin, G. R. Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photonics 2015, 2, 481–490.CrossRefGoogle Scholar
  29. [29]
    Wang, Z. H.; Yang, L.; Li, X. J.; Zhao, X. T.; Wang, H. L.; Zhang, Z. D.; Gao, X. P. A. Granularity controlled nonsaturating linear magnetoresistance in topological insulator Bi2Te3 films. Nano Lett. 2014, 14, 6510–6514.CrossRefGoogle Scholar
  30. [30]
    Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z. D.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1–xSex)3 nanoribbons. ACS Nano 2013, 7, 2126–2131.CrossRefGoogle Scholar
  31. [31]
    Yao, J. D.; Shao, J. M.; Wang, Y. X.; Zhao, Z. R.; Yang, G. W. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541.CrossRefGoogle Scholar
  32. [32]
    Haneman, D. Photoelectric emission and work functions of InSb, GaAs, Bi2Te3 and germanium. J. Phys. Chem. Solids 1959, 11, 205–214.CrossRefGoogle Scholar
  33. [33]
    Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.CrossRefGoogle Scholar
  34. [34]
    Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165–6170.CrossRefGoogle Scholar
  35. [35]
    Mukhopadhyay, K.; Mukhopadhyay, I.; Sharon, M.; Soga, T.; Umeno, M. Carbon photovoltaic cell. Carbon 1997, 35, 863–864.CrossRefGoogle Scholar
  36. [36]
    Jia, Y.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Shu, Q. K.; Gui, X. C.; Zhu, Y. Q.; Zhuang, D. M.; Zhang, G.; Ma, B. B. et al. Nanotube-silicon heterojunction solar cells. Adv. Mater. 2008, 20, 4594–4598.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of PhysicsCase Western Reserve UniversityClevelandUSA

Personalised recommendations