Skip to main content
Log in

Hierarchical MoS2 intercalated clay hybrid nanosheets with enhanced catalytic activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Emerging hierarchical MoS2/pillared-montmorillonite (MoS2/PMMT) hybrid nanosheets were successfully prepared through facile in-situ hydrothermal synthesis of MoS2 within the interlayer of cetyltrimethylammonium bromide PMMT, and their catalytic performance was evaluated by the reduction reaction of 4-nitrophenol (4-NP) using NaBH4 as a reductant. Microstructure and morphology characterization indicated that MoS2/PMMT exhibited hybrid-stacked layered structures with an interlayer spacing of 1.29 nm, and the MoS2 nanosheets were intercalated within the montmorillonite (MMT) layers, with most of the edges exposed to the outside. The catalytic activity and stability of MoS2/PMMT were both enhanced by the MMT. With the MoS2/PMMT as the catalyst, the apparent reaction rate constant of the 4-NP reduction was 0.723 min−1 and was maintained at ~0.679 min−1 after five reaction cycles. The structural evolution of MoS2/PMMT and the possible catalysis mechanism for the reduction reaction of 4-NP were investigated. The as-prepared MoS2/PMMT hybrid nanosheets are promising candidates for catalytic application in the water-treatment and biomedical fields. The strategy developed in this study can provide insights for designing hybrid nanosheets with diverse heterogeneous two-dimensional (2D) nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Naguib, M.; Gogotsi, Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 2015, 48, 128–135.

    Article  Google Scholar 

  2. Wang, F. D.; Wang, Y. Y.; Liu, Y.-H.; Morrison, P. J.; Loomis, R. A.; Buhro, W. E. Two-dimensional semiconductor nanocrystals: Properties, templated formation, and magic-size nanocluster intermediates. Acc. Chem. Res. 2015, 48, 13–21.

    Article  Google Scholar 

  3. Liu, D.; Long, Y.-T. Superior catalytic activity of electrochemically reduced graphene oxide supported iron phthalocyanines toward oxygen reduction reaction. ACS Appl. Mater. Interfaces 2015, 7, 24063–24068.

    Article  Google Scholar 

  4. Liu, D.; Zhang, C. J.; Wang, F.; Huang, Z. Y.; Zhang, N. S.; Zhou, H. H.; Kuang, Y. F. In situ preparation of graphene oxide supported Pd nanoparticles in an ionic liquid and the long-term catalytic stability for the Heck reaction. J. Mater. Chem. A 2015, 3, 16583–16589.

    Article  Google Scholar 

  5. Kuang, S. Y.; Chen, J.; Cheng, X. B.; Zhu, G.; Wang, Z. L. Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics. Nano Energy 2015, 17, 10–16.

    Article  Google Scholar 

  6. Yang, J.-H.; Zhang, Y.; Yin, W.-J.; Gong, X. G.; Yakobson, B. I.; Wei, S.-H. Two-dimensional sis layers with promising electronic and optoelectronic properties: Theoretical prediction. Nano Lett. 2016, 16, 1110–1117.

    Article  Google Scholar 

  7. Zellner, A.; Suntz, R.; Deutschmann, O. Two-dimensional spatial resolution of concentration profiles in catalytic reactors by planar laser-induced fluorescence: No reduction over diesel oxidation catalysts. Angew. Chem., Int. Ed. 2015, 54, 2653–2655.

    Article  Google Scholar 

  8. Rao, C. N. R.; Gopalakrishnan, K.; Maitra, U. Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 2015, 7, 7809–7832.

    Article  Google Scholar 

  9. Yuan, H. T.; Wang, H. T.; Cui, Y. Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling. Acc. Chem. Res. 2015, 48, 81–90.

    Article  Google Scholar 

  10. Wang, L. Z.; Sasaki, T. Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 2014, 114, 9455–9486.

    Article  Google Scholar 

  11. Ma, R. Z.; Sasaki, T. Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 2015, 48, 136–143.

    Article  Google Scholar 

  12. Sun, Y. F.; Gao, S.; Lei, F. C.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48, 3–12.

    Article  Google Scholar 

  13. Guardia, L.; Paredes, J. I.; Munuera, J. M.; Villar-Rodil, S.; Ayán-Varela, M.; Martínez-Alonso, A.; Tascó n, J. M. D. Chemically exfoliated MoS2 nanosheets as an efficient catalyst for reduction reactions in the aqueous phase. ACS Appl. Mater. Interfaces 2014, 6, 21702–21710.

    Article  Google Scholar 

  14. Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183.

    Article  Google Scholar 

  15. Li, X. Y.; Fu, L. J.; Ouyang, J.; Yang, H. M. Microwaveassisted synthesis and interfacial features of CdS/kaolinite nanocomposite. Colloid Surf. A Physicochem. Eng. Asp. 2014, 443, 72–79.

    Article  Google Scholar 

  16. Li, J. Y.; Hou, Y.; Gao, X. F.; Guan, D. S.; Xie, Y. Y.; Chen, J. H.; Yuan, C. A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy 2015, 16, 10–18.

    Article  Google Scholar 

  17. Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B. H. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326–5333.

    Article  Google Scholar 

  18. Tan, Y. W.; Liu, P.; Chen, L. Y.; Cong, W. T.; Ito, Y.; Han, J. H.; Guo, X. W.; Tang, Z.; Fujita, T.; Hirata, A. et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023–8028.

    Article  Google Scholar 

  19. Liu, C. B.; Wang, L. L.; Tang, Y. H.; Luo, S. L.; Liu, Y. T.; Zhang, S. Q.; Zeng, Y. X.; Xu, Y. Z. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2015, 164, 1–9.

    Article  Google Scholar 

  20. Wang, J. F.; Cheng, Q. F.; Lin, L.; Jiang, L. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 2014, 8, 2739–2745.

    Article  Google Scholar 

  21. Peng, K.; Fu, L. J.; Yang, H. M.; Ouyang, J. Perovskite LaFeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 2016, 6, 19723.

    Article  Google Scholar 

  22. Sun, S. M.; Wang, W. Z.; Jiang, D.; Zhang, L.; Li, X. M.; Zheng, Y. L.; An, Q. Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497–1506.

    Article  Google Scholar 

  23. Michalik-Zym, A.; Dula, R.; Duraczynska, D.; Krysciak-Czerwenka, J.; Machej, T.; Socha, R. P.; Wlodarczyk, W.; Gawel, A.; Matusik, J.; Bahranowski, K. et al. Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr-or [Ti, Zr]-pillared montmorillonites for destruction of chlorinated volatile organic compounds. Appl. Catal. B: Environ. 2015, 174–175, 293–307.

    Article  Google Scholar 

  24. Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D. Nanoscale zero valent supported by zeolite and montmorillonite: Template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 2016, 301, 371–380.

    Article  Google Scholar 

  25. Feng, S.-S.; Mei, L.; Anitha, P.; Gan, C. W.; Zhou, W. Y. Poly(lactide)–vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of docetaxel. Biomaterials 2009, 30, 3297–3306.

    Article  Google Scholar 

  26. Li, C. C.; Fu, L. J.; Ouyang, J.; Tang, A. D.; Yang, H. M. Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Appl. Clay Sci. 2015, 115, 212–220.

    Article  Google Scholar 

  27. Liu, S. Y.; Yang, H. M. Porous ceramic stabilized phase change materials for thermal energy storage. RSC Adv. 2016, 6, 48033–48042.

    Article  Google Scholar 

  28. Liu, S. Y.; Yang, H. M. Composite of coal-series kaolinite and capric-lauric acid as form-stable phase-change material. Energy Technol. 2015, 3, 77–83.

    Article  Google Scholar 

  29. Zhang, Y.; Tang, A. D.; Yang, H. M.; Ouyang, J. Applications and interfaces of halloysite nanocomposites. Appl. Clay Sci. 2016, 119, 8–17.

    Article  Google Scholar 

  30. Zhou, Z.; Ouyang, J.; Yang, H. M.; Tang, A. D. Three-way catalytic performances of Pd loaded halloysite-Ce0.5Zr0.5O2 hybrid materials. Appl. Clay Sci. 2016, 121–122, 63–70.

    Article  Google Scholar 

  31. Jin, J.; Fu, L. J.; Yang, H. M.; Ouyang, J. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities. Sci. Rep. 2015, 5, 12429.

    Article  Google Scholar 

  32. Li, X. Y.; Yang, Q.; Ouyang, J.; Yang, H. M.; Chang, S. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl. Clay Sci. 2016, 126, 306–312.

    Article  Google Scholar 

  33. Niu, M. Y.; Li, X. Y.; Ouyang, J.; Yang, H. M. Lithium orthosilicate with halloysite as silicon source for high temperature CO2 capture. RSC Adv. 2016, 6, 44106–44112.

    Article  Google Scholar 

  34. Li, X. Y.; Yang, H. M. Morphology-controllable Li2SiO3 nanostructures. Crystengcomm 2014, 16, 4501–4507.

    Article  Google Scholar 

  35. He, X.; Yang, H. M. Fluorescence and room temperature activity of Y2O3:(Eu3+, Au3+)/palygorskite nanocomposite. Dalton Trans. 2015, 44, 1673–1679.

    Article  Google Scholar 

  36. He, X.; Wang, J. J.; Shu, Z.; Tang, A. D.; Yang, H. M. Y2O3 functionalized natural palygorskite as an adsorbent for methyl blue removal. RSC Adv. 2016, 6, 41765–41771.

  37. Fu, L. J.; Huo, C. L.; He, X.; Yang, H. M. Au encapsulated into Al-MCM-41 mesoporous material: In situ synthesis and electronic structure. RSC Adv. 2015, 5, 20414–20423.

    Article  Google Scholar 

  38. Ding, W. J.; Ouyang, J.; Yang, H. M. Synthesis and characterization of nesquehonite (MgCO3·3H2O) powders from natural talc. Powder Technol. 2016, 292, 169–175.

    Article  Google Scholar 

  39. Peng, K.; Zhang, J. Y.; Yang, H. M.; Ouyang, J. Acidhybridized expanded perlite as a composite phase-change material in wallboards. RSC Adv. 2015, 5, 66134–66140.

    Article  Google Scholar 

  40. Peng, K.; Lv, C. Z.; Yang, H. M. Novel preparation of glass ceramics from amorphized tungsten tailings. Ceram. Int. 2014, 40, 10291–10296.

    Article  Google Scholar 

  41. Peng, K.; Yang, H. M.; Ouyang, J. Tungsten tailing powders activated for use as cementitious material. Powder Technol. 2015, 286, 678–683.

    Article  Google Scholar 

  42. Ding, W. J.; Yang, H. M.; Ouyang, J. Mineral carbonation of a desulfurization residue for CO2 sequestration. RSC Adv. 2015, 5, 67184–67194.

    Article  Google Scholar 

  43. Liu, L. M.; Yang, W. Y.; Sun, W. Z.; Li, Q.; Shang, J. K. Creation of Cu2O@TiO2 composite photocatalysts with p–n heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light. ACS Appl. Mater. Interfaces 2015, 7, 1465–1476.

    Article  Google Scholar 

  44. Lv, J. J.; Wang, A. J.; Ma, X. H.; Xiang, R. Y.; Chen, J. R.; Feng, J. J. One-pot synthesis of porous Pt–Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 290–296.

    Article  Google Scholar 

  45. Qiu, Y. F.; Ma, Z.; Hu, P. A. Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2014, 2, 13471–13478.

    Article  Google Scholar 

  46. Li, X. Y.; Ouyang, J.; Zhou, Y. H.; Yang, H. M. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies. Sci. Rep. 2015, 5, 13763.

    Article  Google Scholar 

  47. Bae, S.; Gim, S.; Kim, H.; Hanna, K. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Appl. Catal. B: Environ. 2016, 182, 541–549.

    Article  Google Scholar 

  48. Li, X. Y.; Tang, A. D. Pd modified kaolinite nanocomposite as a hydrogenation catalyst. RSC Adv. 2016, 6, 15585–15591.

    Article  Google Scholar 

  49. Peng, K.; Fu, L. J.; Ouyang, J.; Yang, H. M. Emerging parallel dual 2D composites: Natural clay mineral hybridizing MoS2 and interfacial structure. Adv. Funct. Mater. 2016, 26, 2666–2675.

    Article  Google Scholar 

  50. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  Google Scholar 

  51. Li, X. Y.; Yang, H. M. Pd hybridizing ZnO/kaolinite nanocomposites: Synthesis, microstructure, and enhanced photocatalytic property. Appl. Clay Sci. 2014, 100, 43–49.

    Article  Google Scholar 

  52. Newaz, A. K. M.; Prasai, D.; Ziegler, J. I.; Caudel, D.; Robinson, S.; Haglund., R. F.; Bolotin, K. I. Electrical control of optical properties of monolayer MoS2. Solid State Commun. 2013, 155, 49–52.

    Article  Google Scholar 

  53. Song, J.-M.; Zhang, S.-S.; Yu, S.-H. Multifunctional Co0.85Se-Fe3O4 nanocomposites: Controlled synthesis and their enhanced performances for efficient hydrogenation of p-nitrophenol and adsorbents. Small 2014, 10, 717–724.

    Article  Google Scholar 

  54. Jiang, F.; Li, R. M.; Cai, J. H.; Xu, W.; Cao, A. M.; Chen, D. Q.; Zhang, X.; Wang, C. R.; Shu, C. Y. Ultrasmall Pd/Au bimetallic nanocrystals embedded in hydrogen-bonded supramolecular structures: Facile synthesis and catalytic activities in the reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 19433–19438.

    Article  Google Scholar 

  55. Shen, H.; Duan, C. T.; Guo, J.; Zhao, N.; Xu, J. Facile in situ synthesis of silver nanoparticles on boron nitride nanosheets with enhanced catalytic performance. J. Mater. Chem. A 2015, 3, 16663–16669.

    Article  Google Scholar 

  56. Ye, W. C.; Yu, J.; Zhou, Y. X.; Gao, D. Q.; Wang, D. A.; Wang, C. M.; Xue, D. S. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopaminefunctionalized graphene and their high performance toward 4-nitrophenol reduction. Appl. Catal. B: Environ. 2016, 181, 371–378.

    Article  Google Scholar 

  57. Cheng, Z. H.; He, B. Z.; Zhou, L. A general one-step approach for in situ decoration of MoS2 nanosheets with inorganic nanoparticles. J. Mater. Chem. A 2015, 3, 1042–1048.

    Article  Google Scholar 

  58. Lin, T. R.; Wang, J.; Guo, L. Q.; Fu, F. F. Fe3O4@MoS2 core–shell composites: Preparation, characterization, and catalytic application. J. Phys. Chem. C 2015, 119, 13658–13664.

    Article  Google Scholar 

  59. Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W. Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res. 2015, 8, 3992–4006.

    Article  Google Scholar 

  60. Xiong, W.; Sikdar, D.; Yap, L. W.; Guo, P. Z.; Premaratne, M.; Li, X. Y.; Cheng, W. L. Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Res. 2016, 9, 415–423.

    Article  Google Scholar 

  61. Xia, J. W.; He, G. Y.; Zhang, L. L.; Sun, X. Q.; Wang, X. Hydrogenation of nitrophenols catalyzed by carbon blacksupported nickel nanoparticles under mild conditions. Appl. Catal. B: Environ. 2016, 180, 408–415.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 51225403), the National Natural Science Foundation of China (No. 41572036), the State Key Laboratory of Powder Metallurgy, Central South University (2015-19) and the Hunan Provincial Science and Technology Project (No. 2015TP1006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaming Yang or Aidong Tang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, K., Fu, L., Yang, H. et al. Hierarchical MoS2 intercalated clay hybrid nanosheets with enhanced catalytic activity. Nano Res. 10, 570–583 (2017). https://doi.org/10.1007/s12274-016-1315-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1315-3

Keywords

Navigation