Advertisement

Nano Research

, Volume 10, Issue 3, pp 767–775 | Cite as

Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics

  • Geonwook Yoo
  • Heekyeong Park
  • Minjung Kim
  • Won Geun Song
  • Seokhwan Jeong
  • Min Hyung Kim
  • Hyungbeen Lee
  • Sang Woo Lee
  • Young Ki Hong
  • Min Goo Lee
  • Sungho LeeEmail author
  • Sunkook KimEmail author
Research Article

Abstract

Various approaches have been proposed for point-of-care diagnostics, and in particular, optical detection is preferred because it is relatively simple and fast. At the same time, field-effect transistor (FET)-based biosensors have attracted great attention because they can provide highly sensitive and label-free detection. In this work, we present highly sensitive, epidermal skin-type point-of-care devices with system-level integration of flexible MoS2 FET biosensors, read-out circuits, and light-emitting diode (LEDs) that enable real-time detection of prostate cancer antigens (PSA). Regardless of the physical forms or mechanical stress conditions, our proposed high-performance MoS2 biosensors can detect a PSA concentration of 1 pg·mL–1 without specific surface treatment for anti-PSA immobilization on the MoS2 surface on which we characterize and confirm physisorption of anti-PSA using Kelvin probe force microscopy (KPFM) and tapping-mode atomic force microscopy (tm-AFM). Furthermore, current modulation induced by the binding process was stably maintained for longer than 2–3 min. The results indicate that flexible MoS2-based FET biosensors have great potential for point-of-care diagnostics for prostate cancer as well as other biomarkers.

Keywords

epidermal skin biomarker MoS2 biosensor real-time point-of-care diagnostics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported in part by the National Research Foundation of Korea (Nos. NRF-2014M3A9 D7070732, and NRF-2015R1A5A1037548). This research was supported by the Commercializations Promotion Agency for R&D Outcomes (COMPA) funded by the Ministry of Science, ICT and Future Planning (MISP).

References

  1. [1]
    Özen, H.; Sözen, S. PSA isoforms in prostate cancer detection. Eur. Urol. Suppl. 2006, 5, 495–499.CrossRefGoogle Scholar
  2. [2]
    Barbosa, A. I.; Gehlot, P.; Sidapra, K.; Edwards, A. D.; Reis, N. M. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens. Bioelectron. 2015, 70, 5–14.CrossRefGoogle Scholar
  3. [3]
    Taneja, S. S. Imaging in the diagnosis and management of prostate cancer. Rev. Urol. 2004, 6, 101–113.Google Scholar
  4. [4]
    Raja, J.; Ramachandran, N.; Munneke, G.; Patel, U. Current status of transrectal ultrasound-guided prostate biopsy in the diagnosis of prostate cancer. Clin. Radiol. 2006, 61, 142–153.CrossRefGoogle Scholar
  5. [5]
    Hricak, H.; Choyke, P. L.; Eberhardt, S. C.; Leibel, S. A.; Scardino, P. T. Imaging prostate cancer: A multidisciplinary perspective. Radiology 2007, 243, 28–53.CrossRefGoogle Scholar
  6. [6]
    Yacoub, J. H.; Verma, S.; Moulton, J. S.; Eggener, S.; Oto, A. Imaging-guided prostate biopsy: Conventional and emerging techniques. Radiographics 2012, 32, 819–837.CrossRefGoogle Scholar
  7. [7]
    von Lode, P. Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin. Biochem. 2005, 38, 591–606.CrossRefGoogle Scholar
  8. [8]
    Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006, 21, 1887–1892.CrossRefGoogle Scholar
  9. [9]
    Oh, S. W.; Kim, Y. M.; Kim, H. J.; Kim, S. J.; Cho, J. S.; Choi, E. Y. Point-of-care fluorescence immunoassay for prostate specific antigen. Clin. Chim. Acta 2009, 406, 18–22.CrossRefGoogle Scholar
  10. [10]
    Johnson, E. D.; Kotowski, T. M. Detection of prostate specific antigen by ELISA. J. Forensic Sci. 1993, 38, 250–258.CrossRefGoogle Scholar
  11. [11]
    Healy, D. A.; Hayes, C. J.; Leonard, P.; McKenna, L.; O’ Kennedy, R. Biosensor developments: Application to prostate-specific antigen detection. Trends Biotechnol. 2007, 25, 125–131.CrossRefGoogle Scholar
  12. [12]
    Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.CrossRefGoogle Scholar
  13. [13]
    Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  14. [14]
    Lee, K.; Nair, P. R.; Scott, A.; Alam, M. A.; Janes, D. B. Device considerations for development of conductancebased biosensors. J. Appl. Phys. 2009, 105, 102046.CrossRefGoogle Scholar
  15. [15]
    Yang, W. R.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem., Int. Ed. 2010, 49, 2114–2138.CrossRefGoogle Scholar
  16. [16]
    Kim, S.; Ju, S.; Back, J. H.; Xuan, Y.; Ye, P. D.; Shim, M.; Janes, D. B.; Mohammadi, S. Fully transparent thin-film transistors based on aligned carbon nanotube arrays and indium tin oxide electrodes. Adv. Mater. 2009, 21, 564–568.CrossRefGoogle Scholar
  17. [17]
    Kim, S.; Kim, S.; Park, J.; Ju, S.; Mohammadi, S. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. ACS Nano 2010, 4, 2994–2998.CrossRefGoogle Scholar
  18. [18]
    Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano. 2014, 8, 3992–4003.CrossRefGoogle Scholar
  19. [19]
    Wang, L.; Wang, Y.; Wong, J. I.; Palacios, T.; Kong, J.; Yang, H. Y. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 2014, 10, 1101–1105.CrossRefGoogle Scholar
  20. [20]
    Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352.CrossRefGoogle Scholar
  21. [21]
    Kalantar-Zadeh, K.; Ou, J. Z. Biosensors based on two-dimensional MoS2. ACS Sens. 2016, 1, 5–16.CrossRefGoogle Scholar
  22. [22]
    Jung, C.; Kim, S. M.; Moon, H.; Han, G.; Kwon, J.; Hong, Y. K.; Omkaram, I.; Yoon, Y.; Kim, S.; Park, J. Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 2015, 5, 15313.CrossRefGoogle Scholar
  23. [23]
    Kim, S.; Konar, A.; Hwang, W.-S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J.-B.; Choi, J.-Y. et al. Highmobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.CrossRefGoogle Scholar
  24. [24]
    Costantino, H. R.; Griebenow, K.; Langer, R.; Klibanov, A. M. On the pH memory of lyophilized compounds containing protein functional groups. Biotechnol. Bioeng. 1997, 53, 345–348.CrossRefGoogle Scholar
  25. [25]
    Meyers, R. A. Molecular Biology and Biotechnology: A Comprehensive Desk Reference; Wiley-VCH: New York, 1995.Google Scholar
  26. [26]
    Okamoto, K.; Yoshimoto, K.; Sugawara, Y.; Morita, S. KPFM imaging of Si(1 1 1)5 3 ×5 3 -Sb surface for atom distinction using NC-AFM. Appl. Surf. Sci. 2003, 210, 128–133.Google Scholar
  27. [27]
    Liscio, A.; Palermo, V.; Samorì, P. Probing local surface potential of quasi-one-dimensional systems: A KPFM study of P3HT nanofibers. Adv. Funct. Mater. 2008, 18, 907–914.CrossRefGoogle Scholar
  28. [28]
    Bieletzki, M.; Hynninen, T.; Soini, T. M.; Pivetta, M.; Henry, C. R.; Foster, A. S.; Esch, F.; Barth, C.; Heiz, U. Topography and work function measurements of thin MgO(001) films on Ag(001) by Nc-AFM and KPFM. Phys. Chem. Chem. Phys. 2010, 12, 3203–3209.CrossRefGoogle Scholar
  29. [29]
    Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 42104.CrossRefGoogle Scholar
  30. [30]
    Song, W. G.; Kwon, H.-J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung, K.-U.; Grigoropoulos, C. P.; Kim, S. et al. High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 2016, 26, 2426–2434.CrossRefGoogle Scholar
  31. [31]
    Hao, G. L.; Huang, Z. Y.; Liu, Y. D.; Qi, X.; Ren, L.; Peng, X. Y.; Yang, L. W.; Wei, X. L.; Zhong, J. X. Electrostatic properties of few-layer MoS2 films. AIP Adv. 2013, 3, 42125.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Geonwook Yoo
    • 1
  • Heekyeong Park
    • 2
  • Minjung Kim
    • 2
  • Won Geun Song
    • 2
  • Seokhwan Jeong
    • 2
  • Min Hyung Kim
    • 3
  • Hyungbeen Lee
    • 3
  • Sang Woo Lee
    • 3
  • Young Ki Hong
    • 2
  • Min Goo Lee
    • 4
  • Sungho Lee
    • 4
    Email author
  • Sunkook Kim
    • 2
    Email author
  1. 1.School of Electronic EngineeringSoongsil UniversitySeoulRepublic of Korea
  2. 2.Multi-Functional Nano/Bio Electronics Lab.Kyung Hee UniversityGyeonggiRepublic of Korea
  3. 3.Department of Biomedical EngineeringYonsei UniversityWonjuRepublic of Korea
  4. 4.Korea Electronics Technology InstituteGyeonggiRepublic of Korea

Personalised recommendations