Nano Research

, Volume 10, Issue 1, pp 64–76 | Cite as

A PIID-DTBT based semi-conducting polymer dots with broad and strong optical absorption in the visible-light region: Highly effective contrast agents for multiscale and multi-spectral photoacoustic imaging

  • Jian Zhang
  • Haobin Chen
  • Ting Zhou
  • Limei Wang
  • Duyang Gao
  • Xuanjun Zhang
  • Yubin Liu
  • Changfeng Wu
  • Zhen Yuan
Research Article


As a hybrid imaging technique, photoacoustic imaging (PAI) can provide multiscale morphological information of tissues, and the use of multi-spectral PAI (MSPAI) can recover the spatial distribution of chromophores of interest, such as hemoglobin within tissues. Herein, we developed a contrast agent that can very effectively combine multiscale PAI with MSPAI for a more comprehensive characterization of complex biological tissues. Specifically, we developed novel PIID-DTBT based semi-conducting polymer dots (Pdots) that show broad and strong optical absorption in the visible-light region (500–700 nm). The performances of gold nanoparticles (GNPs) and gold nanorods (GNRs), which have been verified as excellent photoacoustic contrast agents, were compared with that of the Pdots based on the multiscale PAI system. Both ex vivo and in vivo experiments demonstrated that the Pdots have better photoacoustic conversion efficiency at 532 nm than GNPs and showed similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Photostability and toxicity tests demonstrated that the Pdots are photostable and biocompatible. More importantly, an in vivo MSPAI experiment indicated that the Pdots have better photoacoustic performance than the blood and therefore the signals can be accurately extracted from the background of vascular-rich tissues. Our work demonstrates the great potential of Pdots as highly effective contrast agents for the precise localization of lesions relative to the blood vessels based on multiscale PAI and MSPAI.


nanoparticles polymer dots contrast agents photoacoustic imaging multiscale imaging multi-spectral imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the University of Macau in Macau (Nos. MYRG2014-00093-FHS, MYRG 2015-00036-FHS, and MYRG2016-00110-FHS), Macao government (Nos. FDCT 026/2014/A1 and FDCT 025/2015/A1), and the National Natural Science Foundation of China (No. 11434017).

Supplementary material

12274_2016_1266_MOESM1_ESM.pdf (743 kb)
A PIID-DTBT based semi-conducting polymer dots with broad and strong optical absorption in the visible-light region: Highly effective contrast agents for multiscale and multi-spectral photoacoustic imaging


  1. [1]
    Kruger, R. A.; Liu, P. Y.; Fang, Y. R.; Appledorn, C. R. Photoacoustic ultrasound (PAUS)—Reconstruction tomography. Med. Phys. 1995, 22, 1605–1609.CrossRefGoogle Scholar
  2. [2]
    Xu, M. H.; Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101.CrossRefGoogle Scholar
  3. [3]
    Wang, X. D.; Pang, Y. J.; Ku, G.; Xie, X. Y.; Stoica, G.; Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806.CrossRefGoogle Scholar
  4. [4]
    Yang, S. H.; Xing, D.; Zhou, Q.; Xiang, L. Z.; Lao, Y. Q. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Med. Phys. 2007, 34, 3294–3301.CrossRefGoogle Scholar
  5. [5]
    Lao, Y. Q.; Xing, D.; Yang, S. H.; Xiang, L. Z. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth. Phys. Med. Biol. 2008, 53, 4203–4212.CrossRefGoogle Scholar
  6. [6]
    Xi, L.; Li, X. Q.; Yao, L.; Grobmyer, S.; Jiang, H. B. Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection. Med. Phys. 2012, 39, 2584–2594.CrossRefGoogle Scholar
  7. [7]
    Xu, D.; Yang, S. H.; Wang, Y.; Gu, Y.; Xing, D. Noninvasive and high-resolving photoacoustic dermoscopy of human skin. Bio. Opt. Exp. 2016, 7, 2095–2102.CrossRefGoogle Scholar
  8. [8]
    Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.CrossRefGoogle Scholar
  9. [9]
    Taruttis, A.; Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 2015, 9, 219–227.CrossRefGoogle Scholar
  10. [10]
    Cox, B.; Laufer, J. G.; Arridge, S. R.; Beard, P. C. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012, 17, 061202.CrossRefGoogle Scholar
  11. [11]
    Yuan, Z.; Jiang, H. B. Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography. Opt. Lett. 2009, 34, 1714–1716.CrossRefGoogle Scholar
  12. [12]
    Razansky, D.; Vinegoni, C.; Ntziachristos, V. Multispectral photoacoustic imaging of fluorochromes in small animals. Opt. Lett. 2007, 32, 2891–2893.CrossRefGoogle Scholar
  13. [13]
    Zhang, J.; Yang, S. H.; Ji, X. R.; Zhou, Q.; Xing, D. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: Ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation. J. Am. Coll. Cardiol. 2014, 64, 385–390.CrossRefGoogle Scholar
  14. [14]
    Sethuraman, S.; Amirian, J. H.; Litovsky, S. H.; Smalling, R. W.; Emelianov, S. Y. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt. Exp. 2008, 16, 3362–3367.CrossRefGoogle Scholar
  15. [15]
    Chen, Z. J.; Yang, S. H.; Xing, D. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy. Opt. Lett. 2012, 37, 3414–3416.CrossRefGoogle Scholar
  16. [16]
    Gao, D. Y.; Zhang, P. F.; Liu, C. B.; Chen, C.; Gao, G. H.; Wu, Y. Y.; Sheng, Z. H.; Song, L.; Cai, L. T. Compact chelator-free Ni-integrated CuS nanoparticles with tunable near-infrared absorption and enhanced relaxivity for in vivo dual-modal photoacoustic/MR imaging. Nanoscale 2015, 7, 17631–17636.CrossRefGoogle Scholar
  17. [17]
    Nie, L. M.; Chen, M.; Sun, X. L.; Rong, P. F.; Zheng, N. F.; Chen, X. Y. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale 2014, 6, 1271–1276.CrossRefGoogle Scholar
  18. [18]
    Ray, A.; Wang, X. D.; Lee, Y.-E. K.; Hah, H. J.; Kim, G.; Chen, T.; Orringer, D. A.; Sagher, O.; Liu, X. J.; Kopelman, R. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation. Nano Res. 2011, 4, 1163–1173.CrossRefGoogle Scholar
  19. [19]
    Jiang, Y. Y.; Deng, Z. J.; Yang, D.; Deng, X.; Li, Q.; Sha, Y. L.; Li, C. H.; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152–2161.CrossRefGoogle Scholar
  20. [20]
    Bao, C. C.; Conde, J.; Pan, F.; Li, C.; Zhang, C. L.; Tian, F. R.; Liang, S. J.; de la Fuente, J. M.; Cui, D. X. Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia. Nano Res. 2016, 9, 1043–1056.CrossRefGoogle Scholar
  21. [21]
    Zhou, N.; López-Puente, V.; Wang, Q.; Polavarapu, L.; Pastoriza-Santos, I.; Xu, Q.-H. Plasmon-enhanced light harvesting: Applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 2015, 5, 29076–29097.CrossRefGoogle Scholar
  22. [22]
    Yuan, Z.; Wu, C. F.; Zhao, H. Z.; Jiang, H. B. Imaging of small nanoparticle-containing objects by finite-element-based photoacoustic tomography. Opt. Lett. 2005, 30, 3054–3056.CrossRefGoogle Scholar
  23. [23]
    Li, W. W.; Chen, X. Y. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015, 10, 299–320.CrossRefGoogle Scholar
  24. [24]
    Qin, H.; Zhou, T.; Yang, S. H.; Chen, Q.; Xing, D. Gadolinium(III)–gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine 2013, 8, 1611–1624.CrossRefGoogle Scholar
  25. [25]
    Qin, H.; Zhao, Y.; Zhang, J.; Pan, X.; Yang, S. H.; Xing, D. Inflammation-targeted gold nanorods for intravascular photoacoustic imaging detection of matrix metalloproteinase-2 (MMP2) in atherosclerotic plaques. Nanomedicine 2016, 12, 1765–1774.Google Scholar
  26. [26]
    Zhong, J. P.; Wen, L. W.; Yang, S. H.; Xiang, L. Z.; Chen, Q.; Xing, D. Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods. Nanomedicine 2015, 11, 1499–1509.Google Scholar
  27. [27]
    Cho, W.-S.; Cho, M.; Jeong, J.; Choi, M.; Cho, H.-Y.; Han, B. S.; Kim, S. H.; Kim, H. O.; Lim, Y. T.; Chung, B. H. et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2009, 236, 16–24.CrossRefGoogle Scholar
  28. [28]
    Aillon, K. L.; Xie, Y. M.; El-Gendy, N.; Berkland, C. J.; Forrest, M. L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 2009, 61, 457–466.CrossRefGoogle Scholar
  29. [29]
    Miao, Q. Q.; Lyu, Y.; Ding, D.; Pu, K. Y. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of PH. Adv. Mater. 2016, 28, 3662–3668.CrossRefGoogle Scholar
  30. [30]
    Liu, J.; Geng, J. L.; Liao, L.-D.; Thakor, N.; Gao, X. H.; Liu, B. Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym. Chem. 2014, 5, 2854–2862.CrossRefGoogle Scholar
  31. [31]
    Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570–6597.CrossRefGoogle Scholar
  32. [32]
    Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem., Int. Ed. 2013, 52, 3086–3109.CrossRefGoogle Scholar
  33. [33]
    Sun, K.; Tang, Y.; Li, Q.; Yin, S. Y.; Qin, W. P.; Yu, J. B.; Chiu, D. T.; Liu, Y. B.; Yuan, Z.; Zhang, X. J. et al. In vivo dynamic monitoring of small molecules with implantable polymer-dot transducer. ACS Nano 2016, 10, 6769–6781.CrossRefGoogle Scholar
  34. [34]
    Kong, K. V.; Liao, L.-D.; Goh, D.; Thakor, N. V.; Olivo, M. Novel biodegradable polymer tethered platinum (II) for photoacoustic imaging. Int. J. Nanomed. Nanotechnol. 2014, 5, 223.Google Scholar
  35. [35]
    Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239.CrossRefGoogle Scholar
  36. [36]
    Lyu, Y.; Fang, Y.; Miao, Q. Q.; Zhen, X.; Ding, D.; Pu, K. Y. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 2016, 10, 4472–4481.CrossRefGoogle Scholar
  37. [37]
    Pu, K. Y.; Chattopadhyay, N.; Rao, J. H. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J. Control. Release, in press, DOI: 10.1016/j.jconrel.2016.01.004.Google Scholar
  38. [38]
    Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Y. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049–9052.CrossRefGoogle Scholar
  39. [39]
    Lei, T.; Cao, Y.; Fan, Y. L.; Liu, C.-J.; Yuan, S.-C.; Pei, J. High-performance air-stable organic field-effect transistors: Isoindigo-based conjugated polymers. J. Am. Chem. Soc. 2011, 133, 6099–6101.CrossRefGoogle Scholar
  40. [40]
    Wang, E. G.; Mammo, W.; Andersson, M. R. 25th anniversary article: Isoindigo-based polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Adv. Mater. 2014, 26, 1801–1826.CrossRefGoogle Scholar
  41. [41]
    Wu, C. F.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2008, 2, 2415–2423.CrossRefGoogle Scholar
  42. [42]
    Chen, H. B.; Chang, K. W.; Men, X. J.; Sun, K.; Fang, X. F.; Ma, C.; Zhao, Y. X.; Yin, S. Y.; Qin, W. P.; Wu, C. F. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 2015, 7, 14477–14484.CrossRefGoogle Scholar
  43. [43]
    Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735–743.CrossRefGoogle Scholar
  44. [44]
    Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.CrossRefGoogle Scholar
  45. [45]
    American National Standards Institute. American national standard for safe use of lasers. ANSI Z136.1–2007. New York, NY: American National Standards Institute, 2007.Google Scholar
  46. [46]
    Cavigli, L.; de Angelis, M.; Ratto, F.; Matteini, P.; Rossi, F.; Centi, S.; Fusi, F.; Pini, R. Size affects the stability of the photoacoustic conversion of gold nanorods. J. Phys. Chem. C 2014, 118, 16140–16146.CrossRefGoogle Scholar
  47. [47]
    Liu, Y. B.; Jiang, H. B.; Yuan, Z. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation. Med. Phys. 2016, 43, 3987–3997.CrossRefGoogle Scholar
  48. [48]
    Zhang, Q.; Iwakuma, N.; Sharma, P.; Moudgil, B. M.; Wu, C.; McNeill, J.; Jiang, H.; Grobmyer, S. R. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 2009, 20, 395102.CrossRefGoogle Scholar
  49. [49]
    Agarwal, A.; Huang, S. W.; O’Donnell, M.; Day, K. C.; Day, M.; Kotov, N.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jian Zhang
    • 1
  • Haobin Chen
    • 2
  • Ting Zhou
    • 3
  • Limei Wang
    • 4
    • 5
  • Duyang Gao
    • 1
  • Xuanjun Zhang
    • 1
  • Yubin Liu
    • 1
  • Changfeng Wu
    • 2
  • Zhen Yuan
    • 1
  1. 1.Bioimaging Core, Faculty of Health SciencesUniversity of MacauTaipa, Macau SARChina
  2. 2.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityJilinChina
  3. 3.College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina
  4. 4.College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
  5. 5.Center for Drug Non-clinical Evaluation and Research, Guangdong Biological Resources InstituteGuangdong Academy of SciencesGuangzhouChina

Personalised recommendations