Advertisement

Nano Research

, Volume 10, Issue 1, pp 37–48 | Cite as

In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy

  • Bingmei Sun
  • Jinrui Wu
  • Shaobin Cui
  • Huanhuan Zhu
  • Wei An
  • Qingge Fu
  • Chengwei Shao
  • Aihua Yao
  • Bingdi Chen
  • Donglu Shi
Research Article

Abstract

Graphene oxide/gold nanorod (GO/GNR) nanohybrids were synthesized with a GO- and gold-seed-mediated in situ growth method at room temperature by mixing polystyrene sulfonate (PSS) functionalized GO, secondary growth solution, and gold seeds. Compared with ex situ preparation methods of GO/GNRs or graphene (G)/GNRs, the in situ synthesis of GO/GNRs addressed the issue of the aggregation of the GNRs before their attachment onto the GO. The method is straightforward and environment-friendly. The GO/GNRs showed a remarkable photothermal effect in vitro. The temperature of the GO/GNR nanohybrids increased from 25 to 49.9 °C at a concentration of 50 μg/mL after irradiation with an 808-nm laser (0.4 W/cm2) for 6 min. Additionally, the GO/GNRs exhibited good optical and morphological stability and photothermal properties after six cycles of laser irradiation. Upon injection of the GO/GNRs into xenograft tumors, excellent computed tomography (CT) imaging properties and photothermal effect were obtained. The preclinical CT agent iohexol was combined with the GO/GNRs and further enhanced CT imaging. Therefore, the GO/GNR nanohybrids have great potential for precise CT-image-guided tumor photothermal treatment.

Keywords

graphene oxide/gold nanorods in situ growth computed tomography imaging photothermal therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 51302190), Shanghai Natural Science Foundation (No. 16ZR1400700) and Shanghai Health and Family Planning Commission Project (Nos. 20144Y0248 and 2012y193). We are extremely grateful to Prof. Wei An (Tongji University) for great help with infrared thermal camera. We also thank Mr. Chengwei Shao (Changhai Hospital) for kind help with commercial iohexol and SW1990 tumor cells.

Supplementary material

12274_2016_1264_MOESM1_ESM.pdf (817 kb)
In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy

References

  1. [1]
    Choi, W. I.; Kim, J. Y.; Kang, C.; Byeon, C. C.; Kim, Y. H.; Tee, G. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 2011, 5, 1995–2003.CrossRefGoogle Scholar
  2. [2]
    Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086–1094.CrossRefGoogle Scholar
  3. [3]
    Bagley, A. F.; Hill, S.; Rogers, G. S.; Bhatia, S. N. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 2013, 7, 8089–8097.CrossRefGoogle Scholar
  4. [4]
    Wang, B. K.; Yu, X. F.; Wang, J. H.; Li, Z. B.; Li, P. H.; Wang, H. Y.; Song, L.; Chu, P. K.; Li, C. Z. Gold-nanorods-sirna nanoplex for improved photothermal therapy by gene silencing. Biomaterials 2016, 78, 27–39.CrossRefGoogle Scholar
  5. [5]
    Wang, N. N.; Zhao, Z. L.; Lv, Y. F.; Fan, H. H.; Bai, H. R.; Meng, H. M.; Long, Y. Q.; Fu, T.; Zhang, X. B.; Tan, W. H. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/photodynamic therapy. Nano Res. 2014, 7, 1291–1301.CrossRefGoogle Scholar
  6. [6]
    Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.CrossRefGoogle Scholar
  7. [7]
    Busbee, B. D.; Obare, S. O.; Murphy, C. J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 2003, 15, 414–416.CrossRefGoogle Scholar
  8. [8]
    Xiao, Y. L.; Hong, H.; Matson, V. Z.; Javadi, A.; Xu, W. J.; Yang, Y. A.; Zhang, Y.; Engle, J. W.; Nickles, R. J.; Cai, W. B. et al. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2012, 2, 757–768.CrossRefGoogle Scholar
  9. [9]
    Huang, H. C.; Barua, S.; Kay, D. B.; Rege, K. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano 2010, 4, 1769–1770.CrossRefGoogle Scholar
  10. [10]
    Parab, H. J.; Chen, H. M.; Lai, T.-C.; Huang, J. H.; Chen, P. H.; Liu, R.-S.; Hsiao, M.; Chen, C.-H.; Tsai, D.-P.; Hwu, Y.-K. Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. J. Chem. Phys. C 2009, 113, 7574–7578.CrossRefGoogle Scholar
  11. [11]
    Apte, A.; Bhaskar, P.; Das, R.; Chaturvedi, S.; Poddar, P.; Kulkarni, S. Self-assembled vertically aligned gold nanorod superlattices for ultra-high sensitive detection of molecules. Nano Res. 2015, 8, 907–919.CrossRefGoogle Scholar
  12. [12]
    Jokerst, J. V.; Cole, A. J.; Van de Sompel, D.; Gambhir, S. S. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 2012, 6, 10366–10377.CrossRefGoogle Scholar
  13. [13]
    Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.CrossRefGoogle Scholar
  14. [14]
    He, W.; Henne, W. A.; Wei, Q. S.; Zhao, Y.; Doorneweerd, D. D.; Cheng, J.-X.; Low, P. S.; Wei, A. Two-photon luminescence imaging of bacillus spores using peptidefunctionalized gold nanorods. Nano Res. 2008, 1, 450–456.CrossRefGoogle Scholar
  15. [15]
    Dou, Y.; Guo, Y. Y.; Li, X. D.; Li, X.; Wang, S.; Wang, L.; Lv, G. X.; Zhang, X. N.; Wang, H. J.; Gong, X. Q. et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano 2016, 10, 2536–2548.CrossRefGoogle Scholar
  16. [16]
    Meir, R.; Shamalov, K.; Betzer, O.; Motiei, M.; Horovitz- Fried, M.; Yehuda, R.; Popovtzer, A.; Popovtzer, R.; Cohen, C. J. Nanomedicine for cancer immunotherapy: Tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 2015, 9, 6363–6372.CrossRefGoogle Scholar
  17. [17]
    Zhang, J. M.; Li, C.; Zhang, X.; Huo, S. D.; Jin, S. B.; An, F. F.; Wang, X. D.; Xue, X. D.; Okeke, C. I.; Duan, G. Y. et al. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials 2015, 42, 103–111.CrossRefGoogle Scholar
  18. [18]
    Zhang, Y. X.; Wen, S. H.; Zhao, L. Z.; Li, D.; Liu, C. C.; Jiang, W. B.; Gao, X.; Gu, W. T.; Ma, N.; Zhao, J. H. et al. Ultrastable polyethyleneimine-stabilized gold nanoparticles modified with polyethylene glycol for blood pool, lymph node and tumor CT imaging. Nanoscale 2016, 8, 5567–5577.CrossRefGoogle Scholar
  19. [19]
    Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555–8561.CrossRefGoogle Scholar
  20. [20]
    Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.CrossRefGoogle Scholar
  21. [21]
    Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825–6831.CrossRefGoogle Scholar
  22. [22]
    Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.CrossRefGoogle Scholar
  23. [23]
    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.CrossRefGoogle Scholar
  24. [24]
    Zhou, X.; Laroche, F.; Lamers, G. E. M.; Torraca, V.; Voskamp, P.; Lu, T.; Chu, F. Q.; Spaink, H. P.; Abrahams, J. P.; Liu, Z. F. Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res. 2012, 5, 703–709.CrossRefGoogle Scholar
  25. [25]
    Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199–212.CrossRefGoogle Scholar
  26. [26]
    Zedan, A. F.; Moussa, S.; Terner, J.; Atkinson, G.; El-Shall, M. S. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions. ACS Nano 2013, 7, 627–636.CrossRefGoogle Scholar
  27. [27]
    Moon, H.; Kumar, D.; Kim, H.; Sim, C.; Chang, J. H.; Kim, J. M.; Kim, H.; Lim, D. K. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 2015, 9, 2711–2719.CrossRefGoogle Scholar
  28. [28]
    Turcheniuk, K.; Hage, C. H.; Spadavecchia, J.; Heliot, L.; Boukherroub, R.; Szunerits, S. Plasmonic photothermal therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Netherlands, 2015; pp 1–8.CrossRefGoogle Scholar
  29. [29]
    Song, J. B.; Yang, X. Y.; Jacobson, O.; Lin, L. S.; Huang, P.; Niu, G.; Ma, Q. J.; Chen, X. Y. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 2015, 9, 9199–9209.CrossRefGoogle Scholar
  30. [30]
    Dembereldorj, U.; Choi, S. Y.; Ganbold, E. O.; Song, N. W.; Kim, D.; Choo, J.; Lee, S. Y.; Kim, S.; Joo, S. W. Gold nanorod-assembled pegylated graphene-oxide nanocomposites for photothermal cancer therapy. Photochem. Photobiol. 2014, 90, 659–666.CrossRefGoogle Scholar
  31. [31]
    Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Grácio, J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 2009, 21, 4796–4802.CrossRefGoogle Scholar
  32. [32]
    Huang, J.; Zhang, L. M.; Chen, B. A.; Ji, N.; Chen, F. H.; Zhang, Y.; Zhang, Z. J. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale 2010, 2, 2733–2738.CrossRefGoogle Scholar
  33. [33]
    Xu, C.; Yang, D. R.; Mei, L.; Li, Q. H.; Zhu, H. Z.; Wang, T. H. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl. Mater. Interfaces 2013, 5, 12911–12920.CrossRefGoogle Scholar
  34. [34]
    Jin, Y. S.; Wang, J. R.; Ke, H. T.; Wang, S. M.; Dai, Z. F. Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 2013, 34, 4794–4802.CrossRefGoogle Scholar
  35. [35]
    Shi, J. J.; Wang, L.; Zhang, J.; Ma, R.; Gao, J.; Liu, Y.; Zhang, C. F.; Zhang, Z. Z. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials 2014, 35, 5847–5861.CrossRefGoogle Scholar
  36. [36]
    Chen, F.; Yang, Q.; Zhong, Y.; An, H. X.; Zhao, J. W.; Xie, T.; Xu, Q. X.; Li, X. M.; Wang, D. B.; Zeng, G. M. Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation. Water Res. 2016, 101, 555–563.CrossRefGoogle Scholar
  37. [37]
    Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H. W.; Hu, Y. Z.; Ye, M. X. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3, 339–349.CrossRefGoogle Scholar
  38. [38]
    Hou, C. Y.; Quan, H. C.; Duan, Y. R.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G. Facile synthesis of water-dispersible Cu2O nanocrystal-reduced graphene oxide hybrid as a promising cancer therapeutic agent. Nanoscale 2013, 5, 1227–1232.CrossRefGoogle Scholar
  39. [39]
    Bai, J.; Liu, Y. W.; Jiang, X. E. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials 2014, 35, 5805–5813.CrossRefGoogle Scholar
  40. [40]
    Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.CrossRefGoogle Scholar
  41. [41]
    Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.CrossRefGoogle Scholar
  42. [42]
    Wang, L. M.; Jiang, X. M.; Ji, Y. L.; Bai, R.; Zhao, Y. L.; Wu, X. C.; Chen, C. Y. Surface chemistry of gold nanorods: Origin of cell membrane damage and cytotoxicity. Nanoscale 2013, 5, 8384–8391.CrossRefGoogle Scholar
  43. [43]
    Edgar, J. A.; McDonagh, A. M.; Cortie, M. B. Formation of gold nanorods by a stochastic "popcorn" mechanism. ACS Nano 2012, 6, 1116–1125.CrossRefGoogle Scholar
  44. [44]
    Morita, T.; Tanaka, E.; Inagaki, Y.; Hotta, H.; Shingai, R.; Hatakeyama, Y.; Nishikawa, K.; Murai, H.; Nakano, H.; Hino, K. Aspect-ratio dependence on formation process of gold nanorods studied by time-resolved distance distribution functions. J. Chem. Phys. C 2010, 114, 3804–3810.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Bingmei Sun
    • 1
    • 2
  • Jinrui Wu
    • 3
  • Shaobin Cui
    • 2
  • Huanhuan Zhu
    • 2
  • Wei An
    • 3
  • Qingge Fu
    • 4
  • Chengwei Shao
    • 5
  • Aihua Yao
    • 1
  • Bingdi Chen
    • 2
  • Donglu Shi
    • 2
    • 6
  1. 1.School of Materials Science and EngineeringTongji UniversityShanghaiChina
  2. 2.The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghaiChina
  3. 3.School of Mechanical EngineeringTongji UniversityShanghaiChina
  4. 4.Department of Emergency, Changhai HospitalSecond Military Medical UniversityShanghaiChina
  5. 5.Radiology Department of Changhai HosptialSecond Military Medical UniversityShanghaiChina
  6. 6.Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA

Personalised recommendations