Nano Research

, Volume 10, Issue 1, pp 22–36 | Cite as

Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes

  • Seongdong Lim
  • Doo-Seung Um
  • Minjeong Ha
  • Qianpeng Zhang
  • Youngsu Lee
  • Yuanjing Lin
  • Zhiyong Fan
  • Hyunhyub Ko
Research Article

Abstract

The development of flexible photodetectors has received great attention for future optoelectronic applications including flexible image sensors, biomedical imaging, and smart, wearable systems. Previously, omnidirectional photodetectors were only achievable by integration of a hemispherical microlens assembly on multiple photodetectors. Herein, a hierarchical photodiode design of ZnO nanowires (NWs) on honeycomb-structured Si (H-Si) membranes is demonstrated to exhibit excellent omnidirectional light-absorption ability and thus maintain high photocurrents over broad spectral ranges (365 to 1,100 nm) for wide incident angles (0° to 70°), which enabled broadband omnidirectional light detection in flexible photodetectors. Furthermore, the stress-relieving honeycomb pattern within the photodiode micromembranes provided photodetectors with excellent mechanical flexibility (10% decrease in photocurrent at a bending radius of 3 mm) and durability (minimal change in photocurrent over 10,000 bending cycles). When employed in semiconductor thin films, the hierarchical NW/honeycomb heterostructure design acts as an efficient platform for various optoelectronic devices requiring mechanical flexibility and broadband omnidirectional light detection.

Keywords

flexible photodetector photodiode omnidirectional hierarchical zinc oxide nanowire 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1263_MOESM1_ESM.pdf (3.6 mb)
Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes

References

  1. [1]
    Nau, S.; Wolf, C.; Sax, S.; List-Kratochvil, E. J. W. Organic non-volatile resistive photo-switches for flexible image detector arrays. Adv. Mater. 2015, 27, 1048–1052.CrossRefGoogle Scholar
  2. [2]
    Zhang, L.; Wu, T.; Guo, Y.; Zhao, Y.; Sun, X.; Wen, Y.; Yu, G.; Liu, Y. Large-area, flexible imaging arrays constructed by light-charge organic memories. Sci. Rep. 2013, 3, 1080.Google Scholar
  3. [3]
    Someya, T.; Kato, Y.; Iba, S.; Noguchi, Y.; Sekitani, T.; Kawaguchi, H.; Sakurai, T. Integration of organic FETs with organic photodiodes for a large area, flexible, and lightweight sheet image scanners. IEEE Trans. Electron Devices 2005, 52, 2502–2511.CrossRefGoogle Scholar
  4. [4]
    Floreano, D.; Pericet-Camara, R.; Viollet, S.; Ruffier, F.; Bruckner, A.; Leitel, R.; Buss, W.; Menouni, M.; Expert, F.; Juston, R. et al. Miniature curved artificial compound eyes. Proc. Natl. Acad. Sci. USA 2013, 110, 9267–9272.CrossRefGoogle Scholar
  5. [5]
    Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753.CrossRefGoogle Scholar
  6. [6]
    Lee, L. P.; Szema, R. Inspirations from biological optics for advanced photonic systems. Science 2005, 310, 1148–1150.CrossRefGoogle Scholar
  7. [7]
    Lochner, C. M.; Khan, Y.; Pierre, A.; Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 2014, 5, 5745.CrossRefGoogle Scholar
  8. [8]
    Lee, C. M.; Engelbrecht, C. J.; Soper, T. D.; Helmchen, F.; Seibel, E. J. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J. Biophotonics 2010, 3, 385–407.CrossRefGoogle Scholar
  9. [9]
    Huang, S. Y.; Guo, C. F.; Zhang, X.; Pan, W.; Luo, X.; Zhao, C. S.; Gong, J. H.; Li, X. Y.; Ren, Z. F.; Wu, H. Buckled tin oxide nanobelt webs as highly stretchable and transparent photosensors. Small 2015, 11, 5712–5718.CrossRefGoogle Scholar
  10. [10]
    Gao, Y.; Sim, K.; Sun, S. C.; Chen, Z.; Song, J. Z.; Yu, C. J. Crack-insensitive wearable electronics enabled through high-strength kevlar fabrics. IEEE Trans. Compon., Packag., Manuf. Technol. 2015, 5, 1230–1236.CrossRefGoogle Scholar
  11. [11]
    Wang, Z. R.; Wang, H.; Liu, B.; Qiu, W. Z.; Zhang, J.; Ran, S. H.; Huang, H. T.; Xu, J.; Han, H. W.; Chen, D. et al. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 2011, 5, 8412–8419.CrossRefGoogle Scholar
  12. [12]
    Rim, Y. S.; Yang, Y. M.; Bae, S. H.; Chen, H. J.; Li, C.; Goorsky, M. S.; Yang, Y. Ultrahigh and broad spectral photodetectivity of an organic–inorganic hybrid phototransistor for flexible electronics. Adv. Mater. 2015, 27, 6885–6891.CrossRefGoogle Scholar
  13. [13]
    Pace, G.; Grimoldi, A.; Natali, D.; Sampietro, M.; Coughlin, J. E.; Bazan, G. C.; Caironi, M. All-organic and fully-printed semitransparent photodetectors based on narrow bandgap conjugated molecules. Adv. Mater. 2014, 26, 6773–6777.CrossRefGoogle Scholar
  14. [14]
    Jang, S.; Hwang, E.; Lee, Y.; Lee, S.; Cho, J. H. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett. 2015, 15, 2542–2547.CrossRefGoogle Scholar
  15. [15]
    Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.CrossRefGoogle Scholar
  16. [16]
    Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348–352.CrossRefGoogle Scholar
  17. [17]
    Xie, X. M.; Shen, G. Z. Single-crystalline In2S3 nanowirebased flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale 2015, 7, 5046–5052.CrossRefGoogle Scholar
  18. [18]
    Tian, W.; Zhang, C.; Zhai, T. Y.; Li, S. L.; Wang, X.; Liu, J. W.; Jie, X.; Liu, D. Q.; Liao, M. Y.; Koide, Y. et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv. Mater. 2014, 26, 3088–3093.CrossRefGoogle Scholar
  19. [19]
    Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007.Google Scholar
  20. [20]
    Zheng, W. S.; Xie, T.; Zhou, Y.; Chen, Y. L.; Jiang, W.; Zhao, S. L.; Wu, J. X.; Jing, Y. M.; Wu, Y.; Chen, G. C. et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 2015, 6, 6972.CrossRefGoogle Scholar
  21. [21]
    Yuan, X.; Tang, L.; Liu, S. S.; Wang, P.; Chen, Z. G.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Zou, Y. C.; Liu, C. et al. Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett. 2015, 15, 3571–3577.CrossRefGoogle Scholar
  22. [22]
    Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. Large-area, transparent, and flexible infrared photodetector fabricated using p–n junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014, 14, 3702–3708.CrossRefGoogle Scholar
  23. [23]
    Tamalampudi, S. R.; Lu, Y. Y.; Kumar, U. R.; Sankar, R.; Liao, C. D.; Moorthy, B. K.; Cheng, C. H.; Chou, F. C.; Chen, Y. T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800–2806.CrossRefGoogle Scholar
  24. [24]
    Seo, J.-H.; Oh, T.-Y.; Park, J.; Zhou, W. D.; Ju, B.-K.; Ma, Z. Q. A multifunction heterojunction formed between pentacene and a single-crystal silicon nanomembrane. Adv. Funct. Mater. 2013, 23, 3398–3403.CrossRefGoogle Scholar
  25. [25]
    Yuan, H.-C.; Shin, J.; Qin, G. X.; Sun, L.; Bhattacharya, P.; Lagally, M. G.; Celler, G. K.; Ma, Z. Q. Flexible photodetectors on plastic substrates by use of printing transferred singlecrystal germanium membranes. Appl. Phys. Lett. 2009, 94, 013102.CrossRefGoogle Scholar
  26. [26]
    Liu, Y. L.; Yu, C. C.; Lin, K. T.; Yang, T. C.; Wang, E. Y.; Chen, H. L.; Chen, L. C.; Chen, K. H. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene-gold oxide heterojunction. ACS Nano 2015, 9, 5093–5103.CrossRefGoogle Scholar
  27. [27]
    Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380.CrossRefGoogle Scholar
  28. [28]
    Wang, X. F.; Song, W. F.; Liu, B.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. High-performance organic–inorganic hybrid photodetectors based on P3HT:CdSe nanowire heterojunctions on rigid and flexible substrates. Adv. Funct. Mater. 2013, 23, 1202–1209.CrossRefGoogle Scholar
  29. [29]
    Manga, K. K.; Wang, J. Z.; Lin, M.; Zhang, J.; Nesladek, M.; Nalla, V.; Ji, W.; Loh, K. P. High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids. Adv. Mater. 2012, 24, 1697–1702.CrossRefGoogle Scholar
  30. [30]
    Hu, K.; Chen, H. Y.; Jiang, M. M.; Teng, F.; Zheng, L. X.; Fang, X. S. Broadband photoresponse enhancement of a high-performance t-Se microtube photodetector by plasmonic metallic nanoparticles. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.201602408.Google Scholar
  31. [31]
    Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403–433.CrossRefGoogle Scholar
  32. [32]
    Wang, A.; Gill, P.; Molnar, A. Light field image sensors based on the talbot effect. Appl. Opt. 2009, 48, 5897–5905.CrossRefGoogle Scholar
  33. [33]
    Martin, N.; Ruiz, J. M. Calculation of the PVmodules angular losses under field conditions by means of an analytical model. Sol. Energy Mater. Sol. Cells 2001, 70, 25–38.CrossRefGoogle Scholar
  34. [34]
    Courtial, J.; Oxburgh, S.; Tyc, T. Direct stigmatic imaging with curved surfaces. J. Opt. Soc. Am. A 2015, 32, 478–481.CrossRefGoogle Scholar
  35. [35]
    Ko, D.-H.; Tumbleston, J. R.; Henderson, K. J.; Euliss, L. E.; DeSimone, J. M.; Lopez, R.; Samulski, E. T. Biomimetic microlens array with antireflective “moth-eye” surface. Soft Matter 2011, 7, 6404–6407.CrossRefGoogle Scholar
  36. [36]
    Jeong, K. H.; Kim, J.; Lee, L. P. Biologically inspired artificial compound eyes. Science 2006, 312, 557–561.CrossRefGoogle Scholar
  37. [37]
    Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.CrossRefGoogle Scholar
  38. [38]
    Fang, C.-Y.; Liu, Y.-L.; Lee, Y.-C.; Chen, H.-L.; Wan, D.-H.; Yu, C.-C. Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes. Adv. Funct. Mater. 2013, 23, 1412–1421.CrossRefGoogle Scholar
  39. [39]
    Yan, X.; Poxson, D. J.; Cho, J.; Welser, R. E.; Sood, A. K.; Kim, J. K.; Schubert, E. F. Enhanced omnidirectional photovoltaic performance of solar cells using multiplediscrete- layer tailored- and low-refractive index anti-reflection coatings. Adv. Funct. Mater. 2013, 23, 583–590.CrossRefGoogle Scholar
  40. [40]
    Ou, Y. Y.; Zhu, X. L.; Jokubavicius, V.; Yakimova, R.; Mortensen, N. A.; Syväjärvi, M.; Xiao, S. S.; Ou, H. Y. Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures. Sci. Rep. 2014, 4, 4662.Google Scholar
  41. [41]
    Lin, Q. F.; Leung, S. F.; Lu, L. F.; Chen, X. Y.; Chen, Z.; Tang, H. N.; Su, W. J.; Li, D. D.; Fan, Z. Y. Inverted nanocone-based thin film photovoltaics with omnidirectionally enhanced performance. ACS Nano 2014, 8, 6484–6490.CrossRefGoogle Scholar
  42. [42]
    Lin, H.; Xiu, F.; Fang, M.; Yip, S.; Cheung, H. Y.; Wang, F. Y.; Han, N.; Chan, K. S.; Wong, C. Y.; Ho, J. C. Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. ACS Nano 2014, 8, 3752–3760.CrossRefGoogle Scholar
  43. [43]
    Wu, W. Q.; Feng, H. L.; Rao, H. S.; Xu, Y. F.; Kuang, D. B.; Su, C. Y. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures. Nat. Commun. 2014, 5, 3968.Google Scholar
  44. [44]
    Wang, H. P.; Lin, T. Y.; Hsu, C. W.; Tsai, M. L.; Huang, C. H.; Wei, W. R.; Huang, M. Y.; Chien, Y. J.; Yang, P. C.; Liu, C. W. et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions. ACS Nano 2013, 7, 9325–9335.CrossRefGoogle Scholar
  45. [45]
    Wang, H. P.; Lin, T. Y.; Tsai, M. L.; Tu, W. C.; Huang, M. Y.; Liu, C. W.; Chueh, Y. L.; He, J. H. Toward efficient and omnidirectional n-type Si solar cells: Concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures. ACS Nano 2014, 8, 2959–2969.CrossRefGoogle Scholar
  46. [46]
    Wei, W. R.; Tsai, M. L.; Ho, S. T.; Tai, S. H.; Ho, C. R.; Tsai, S. H.; Liu, C. W.; Chung, R. J.; He, J. H. Above-11%-efficiency organic–inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano Lett. 2013, 13, 3658–3663.CrossRefGoogle Scholar
  47. [47]
    Lin, C. A.; Lai, K. Y.; Lien, W. C.; He, J. H. An efficient broadband and omnidirectional light-harvesting scheme employing a hierarchical structure based on a ZnO nanorod/ Si3N4-coated Si microgroove on 5-inch single crystalline Si solar cells. Nanoscale 2012, 4, 6520–6526.CrossRefGoogle Scholar
  48. [48]
    Manekkathodi, A.; Lu, M. Y.; Wang, C. W.; Chen, L. J. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater. 2010, 22, 4059–4063.CrossRefGoogle Scholar
  49. [49]
    Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett 2013, 13, 1649–1654.CrossRefGoogle Scholar
  50. [50]
    An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphenesilicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.CrossRefGoogle Scholar
  51. [51]
    Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.CrossRefGoogle Scholar
  52. [52]
    Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.CrossRefGoogle Scholar
  53. [53]
    Zhang, Y. Z.; Liu, T.; Meng, B.; Li, X. H.; Liang, G. Z.; Hu, X. N.; Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811.CrossRefGoogle Scholar
  54. [54]
    Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 2014, 8, 6312–6320.CrossRefGoogle Scholar
  55. [55]
    Saran, R.; Nordin, M. N.; Curry, R. J. Facile fabrication of PbS nanocrystal: C60 fullerite broadband photodetectors with high detectivity. Adv. Funct. Mater. 2013, 23, 4149–4155.CrossRefGoogle Scholar
  56. [56]
    Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911.CrossRefGoogle Scholar
  57. [57]
    Tsai, D. S.; Lin, C. A.; Lien, W. C.; Chang, H. C.; Wang, Y. L.; He, J. H. Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal schottky photodetectors improved by ZnO nanorod arrays. ACS Nano 2011, 5, 7748–7753.CrossRefGoogle Scholar
  58. [58]
    Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.CrossRefGoogle Scholar
  59. [59]
    Ko, H.; Zhang, Z. X.; Takei, K.; Javey, A. Hierarchical polymer micropillar arrays decorated with ZnO nanowires. Nanotechnology 2010, 21, 295305.CrossRefGoogle Scholar
  60. [60]
    Ha, M.; Lim, S.; Park, J.; Um, D.-S.; Lee, Y.; Ko, H. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater. 2015, 25, 2841–2849.CrossRefGoogle Scholar
  61. [61]
    Kim, H.-K.; Kim, K.-K.; Park, S.-J.; Seong, T.-Y.; Adesida, I. Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer. J. Appl. Phys. 2003, 94, 4225–4227.CrossRefGoogle Scholar
  62. [62]
    Huang, C.-Y.; Yang, Y.-J.; Chen, J.-Y.; Wang, C.-H.; Chen, Y.-F.; Hong, L.-S.; Liu, C.-S.; Wu, C.-Y. p-Si nanowires/ SiO2/n-ZnO heterojunction photodiodes. Appl. Phys. Lett. 2010, 97, 013503.Google Scholar
  63. [63]
    Ghosh, R.; Basak, D. Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction. Appl. Phys. Lett. 2007, 90, 243106.CrossRefGoogle Scholar
  64. [64]
    Hwang, J. D.; Chen, Y. H. Carrier transport mechanism on ZnO nanorods/p-Si heterojunction diodes with various atmospheres annealing hydrothermal seed-layer. Thin Solid Films 2012, 520, 5409–5412.CrossRefGoogle Scholar
  65. [65]
    Yakuphanoglu, F.; Caglar, Y.; Caglar, M.; Ilican, S. ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate. Mat. Sci. Semicon. Proc. 2010, 13, 137–140.CrossRefGoogle Scholar
  66. [66]
    Klason, P.; Rahman, M. M.; Hu, Q. H.; Nur, O.; Turan, R.; Willander, M. Fabrication and characterization of p-Si/n-ZnO heterostructured junctions. Microelect. J. 2009, 40, 706–710.CrossRefGoogle Scholar
  67. [67]
    Mridha, S.; Basak, D. Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction. J. Appl. Phys. 2007, 101, 083102.CrossRefGoogle Scholar
  68. [68]
    Bai, Z. M.; Yan, X. Q.; Chen, X.; Cui, Y.; Lin, P.; Shen, Y. W.; Zhang, Y. Ultraviolet and visible photoresponse properties of a ZnO/Si heterojunction at zero bias. RSC Adv. 2013, 3, 17682–17688.CrossRefGoogle Scholar
  69. [69]
    Liao, Q. L.; Liang, M. Y.; Zhang, Z.; Zhang, G. J.; Zhang, Y. Strain-modulation and service behavior of Au–MgO–ZnO ultraviolet photodetector by piezo-phototronic effect. Nano Res. 2015, 8, 3772–3779.CrossRefGoogle Scholar
  70. [70]
    Sharma, M.; Pudasaini, P. R.; Ruiz-Zepeda, F.; Elam, D.; Ayon, A. A. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. ACS Appl. Mater. Interfaces 2014, 6, 4356–4363.CrossRefGoogle Scholar
  71. [71]
    Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.CrossRefGoogle Scholar
  72. [72]
    Dhara, S.; Giri, P. K. ZnO nanowire heterostructures: Intriguing photophysics and emerging applications. Rev. Nanosci. Nanotechnol. 2013, 2, 147–170.CrossRefGoogle Scholar
  73. [73]
    Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.CrossRefGoogle Scholar
  74. [74]
    Zeng, L. H.; Wang, M. Z.; Hu, H.; Nie, B.; Yu, Y. Q.; Wu, C. Y.; Wang, L.; Hu, J. G.; Xie, C.; Liang, F. X. et al. Monolayer graphene/germanium schottky junction as highperformance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366.CrossRefGoogle Scholar
  75. [75]
    Qi, H. X.; Li, Q. S.; Zhao, B.; Zheng, M. M.; Li, X. S.; Zhang, N. Influence of ZnO homobuffer layer on n-ZnO/p-Si photodiode. Mater. Sci. Technol. 2008, 24, 1002–1004.CrossRefGoogle Scholar
  76. [76]
    Schubert, E. F. Light-Emitting Diodes, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006.CrossRefGoogle Scholar
  77. [77]
    Liu, Y.; Gorla, C. R.; Liang, S.; Emanetoglu, N.; Lu, Y.; Shen, H.; Wraback, M. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J. Electron. Mater. 2000, 29, 69–74.CrossRefGoogle Scholar
  78. [78]
    Sieg, R. M.; Carlin, J. A.; Boeckl, J. J.; Ringel, S. A.; Currie, M. T.; Ting, S. M.; Langdo, T. A.; Taraschi, G.; Fitzgerald, E. A.; Keyes, B. M. High minority-carrier lifetimes in GaAs grown on low-defect-density Ge/GeSi/Si substrates. Appl. Phys. Lett. 1998, 73, 3111–3113.CrossRefGoogle Scholar
  79. [79]
    Ridhuan, N. S.; Razak, K. A.; Lockman, Z.; Abdul Aziz, A. Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PLoS One 2012, 7, e50405.CrossRefGoogle Scholar
  80. [80]
    Chao, Y. C.; Chen, C. Y.; Lin, C. A.; Dai, Y. A.; He, J. H. Antireflection effect of ZnO nanorod arrays. J. Mater. Chem. 2010, 20, 8134–8138.CrossRefGoogle Scholar
  81. [81]
    Zhao, J. H.; Wang, A. H.; Green, M. A.; Ferrazza, F. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 1998, 73, 1991–1993.CrossRefGoogle Scholar
  82. [82]
    Sai, H.; Saito, K.; Kondo, M. Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance. IEEE J. Photovolt. 2013, 3, 5–10.CrossRefGoogle Scholar
  83. [83]
    Hwang, J. K.; Cho, S.; Dang, J. M.; Kwak, E. B.; Song, K.; Moon, J.; Sung, M. M. Direct nanoprinting by liquidbridge- mediated nanotransfer moulding. Nat. Nanotechnol. 2010, 5, 742–748.CrossRefGoogle Scholar
  84. [84]
    Davami, K.; Zhao, L.; Lu, E.; Cortes, J.; Lin, C.; Lilley, D. E.; Purohit, P. K.; Bargatin, I. Ultralight shape-recovering plate mechanical metamaterials. Nat. Commun. 2015, 6, 10019.CrossRefGoogle Scholar
  85. [85]
    Takahashi, T.; Takei, K.; Gillies, A. G.; Fearing, R. S.; Javey, A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett. 2011, 11, 5408–5413.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Seongdong Lim
    • 1
  • Doo-Seung Um
    • 1
  • Minjeong Ha
    • 1
  • Qianpeng Zhang
    • 2
  • Youngsu Lee
    • 1
  • Yuanjing Lin
    • 2
  • Zhiyong Fan
    • 2
  • Hyunhyub Ko
    • 1
  1. 1.School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan Metropolitan CityRepublic of Korea
  2. 2.Department of Electronic and Computer EngineeringHong Kong University of Science and Technology, Clear Water Bay, KowloonHong KongChina

Personalised recommendations