Abstract
The monolithic three-dimensional integration of memory and logic circuits could dramatically improve the performance and energy efficiency of computing systems. Some conventional and emerging memories are suitable for vertical integration, including highly scalable metal-oxide resistive switching devices (“memristors”). However, the integration of logic circuits has proven to be much more challenging than expected. In this study, we demonstrated memory and logic functionality in a monolithic three-dimensional circuit by adapting the recently proposed memristor-based stateful material implication logic. By modifying the original circuit to increase its robustness to device imperfections, we experimentally showed, for the first time, a reliable multi-cycle multi-gate material implication logic operation and half-adder circuit within a threedimensional stack of monolithically integrated memristors. Direct data manipulation in three dimensions enables extremely compact and high-throughput logicin- memory computing and, remarkably, presents a viable solution for the Feynman Grand Challenge of implementing an 8-bit adder at the nanoscale.

This is a preview of subscription content, access via your institution.
References
Borghetti, J.; Snider, G. S.; Kuekes, P. J.; Yang, J. J.; Stewart, D. R.; Williams, R. S. “Memristive” switches enable “stateful” logic operations via material implication. Nature 2010, 464, 873–876.
Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.
Wong, H.-S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.
Chevallier, C. J.; Siau, C. H.; Lim, S. F.; Namala, S. R.; Matsuoka, M.; Bateman, B. L.; Rinerson, D. A 0.13 µm 64 Mb multi-layered conductive metal-oxide memory. In Proceedings of the 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, USA, 2010, pp 260–261.
Kawahara, A.; Azuma, R.; Ikeda, Y.; Kawai, K.; Katoh, Y.; Hayakawa, Y.; Tsuji, K.; Yoneda, S.; Himeno, A.; Shimakawa, K. et al. An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput. IEEE J Solid-State Circuits 2013, 48, 178–185.
Yu, S. M.; Chen, H.-Y.; Gao, B.; Kang, J. F.; Wong, H.-S. P. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 2013, 7, 2320–2325.
Liu, T. Y.; Yan, T. H.; Scheuerlein, R.; Chen, Y. C.; Lee, J. K. Y.; Balakrishnan, G.; Yee, G.; Zhang, H.; Yap, A.; Ouyang, J. W. et al. A 130.7-mm2-layer 32-Gb ReRAM memory device in 24-nm technology. IEEE J. Solid-State Circuits 2014, 49, 140–153.
Govoreanu, B.; Redolfi, A.; Zhang, L.; Adelmann, C.; Popovici, M.; Clima, S.; Hody, H.; Paraschiv, V.; Radu, I. P.; Franquet, A. et al. Vacancy-modulated conductive oxide resistive RAM (VMCO-RRAM): An area-scalable switching current, self-compliant, highly nonlinear and wide on/offwindow resistive switching cell. In Proceedings of the 2013 IEEE International Electron Devices Meeting (IEDM), Washington DC, USA, 2013.
Likharev, K. K.; Korotkov, A. N. “Single-electron parametron”: Reversible computation in a discrete state system. Science 1996, 273, 763–765.
Cowburn, R. P.; Welland, M. E. Room temperature magnetic quantum cellular automata. Science 2000, 287, 1466–1468.
Behin-Aein, B.; Datta, D.; Salahuddin, S.; Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 2010, 5, 266–270.
Di Ventra, M.; Pershin, Y. V. The parallel approach. Nat. Phys. 2013, 9, 200–202.
Chang, M. F.; Yang, S.-M.; Kuo, C.-C.; Yang, T.-C.; Yeh, C-J.; Chien, T.-F.; Huang, L.-Y.; Sheu, S.-S.; Tseng, P.-L.; Chen, Y.-S. et al. Set-triggered-parallel-reset memristor logic for high-density heterogeneous-integration friendly normally off applications. IEEE Trans. Circuits Syst. II, Exp. Briefs 2015, 62, 80–84.
Wulf, W. A.; McKee, S. A. Hitting the memory wall: Implications of the obvious. ACM/SIGARCH Computer Architecture News 1995, 23, 20–24.
Shin, S.; Kim, K.; Kang, S. M. Resistive computing: Memristors-enabled signal multiplication. IEEE Trans. Circuits Syst. I, Reg. Papers 2013, 60, 1241–1249.
Zhu, X.; Yang, X. J.; Wu, C. Q.; Xiao, N.; Wu, J. J.; Yi, X. Performing stateful logic on memristor memory. IEEE Trans. Circuits Syst. II, Exp. Briefs 2013, 60, 682–686.
Levy, Y.; Bruck, J.; Cassuto, Y.; Friedman, E. G.; Kolodny, A.; Yaakobi, E.; Kvatinsky, S. Logic operations in memory using a memristive Akers array. Microelectron. J. 2014, 45, 1429–1437.
Mane, P.; Talati, N.; Riswadkar, A.; Raghu, R.; Ramesha, C. K. Stateful-NOR based reconfigurable architecture for logic implementation. Microelectron. J. 2015, 46, 551–562.
Hamdioui, S.; Xie, L.; Nguyen, H. A. D.; Taouil, M.; Bertels, K.; Corporaal, H.; Jiao, H. L.; Catthoor, F.; Wouters, D.; Eike, L. et al. Memristor based computation-in-memory architecture for data-intensive applications. In Proceedings of Design, Automation and Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2015, pp 1718–1725.
Lehtonen, E.; Poikonen, J. H.; Tissari, J.; Laiho, M.; Koskinen, L. Recursive algorithms in memristive logic arrays. IEEE Trans. Emerg. Sel. Topics Circuits Syst. 2015, 5, 279–292.
Xie, L.; Nguyen, H. A. D.; Taouil, M.; Bertels, K.; Hamdioui, S. Fast boolean logic mapped on memristor crossbar. In Proceedings of the 2015 33rd International Conference on Computer Design (ICCD), New York City, USA, 2015, pp 335–342.
Li, H.; Gao, B.; Chen, Z.; Zhao, Y.; Huang, P.; Ye, H.; Liu, L.; Liu, X.; Kang, J. A learnable parallel processing architecture towards unity of memory and computing. Sci. Rep. 2015, 5, 13330.
Sun, X. W.; Li, G. Q.; Ding, L. H.; Yang, N.; Zhang, W. F. Unipolar memristors enable “stateful” logic operations via material implication. Appl. Phys. Lett. 2011, 99, 072101.
Prezioso, M.; Riminucci, A.; Graziosi, P.; Bergenti, I.; Rakshit, R.; Cecchini, R.; Vianelli, A.; Borgatti, F.; Haag, N.; Willis, M. et al. A single-device universal logic gate based on a magnetically enhanced memristor. Adv. Mater. 2013, 25, 534–538.
Elstner, M.; Weisshart, K.; Mü llen, K.; Schiller, A. Molecular logic with a saccharide probe on the few-molecules level. J. Am. Chem. Soc. 2012, 134, 8098–8100.
Mahmoudi, H.; Windbacher, T.; Sverdlov, V.; Selberherr, S. Implication logic gates using spin-transfer-torque-operated magnetic tunnel junctions for intrinsic logic-in-memory. Solid-State Electron. 2013, 84, 191–197.
Siemon, A.; Breuer, T.; Aslam, N.; Ferch, S.; Kim, W.; van den Hurk, J.; Rana, V.; Hoffmann-Eifert, S.; Waser, R.; Menzel, S. et al. Realization of Boolean logic functionality using redox-based memristive devices. Adv. Funct. Mat. 2015, 25, 6414–6423.
Balatti, S.; Ambrogio, S.; Ielmini, D. Normally-off logic based on resistive switches - part II: Logic circuits. IEEE Trans. Electron Devices 2015, 62, 1839–1847.
Zhou, Y. X.; Li, Y.; Xu, L.; Zhong, S. J.; Xu, R. G.; Miao, X. S. A hybrid memristor-CMOS XOR gate for nonvolatile logic computation. Phys. Status Solidi A 2016, 213, 1050–1054.
Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E. G.; Kolodny, A.; Weiser, U. C. Memristor-based material implication (IMPLY) logic: Design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 2054–2066.
Lehtonen, E.; Poikonen, J. H.; Laiho, M. Applications and limitations of memristive implication logic. In Proceedings of the 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), Turin, Italy, 2012.
Siemon, A.; Menzel, S.; Chattopadhyay, A.; Waser, R.; Linn, E. In-memory adder functionality in 1S1R arrays. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015, pp 1338–1341.
Ferch, S.; Linn, E.; Waser, R.; Menzel, S. Simulation and comparison of two sequential logic-in-memory approaches using a dynamic electrochemical metallization cell model. Microelectron. J. 2014, 45, 1416–1428.
Kim, K.; Shin, S.; Kang, S. M. Field programmable stateful logic array. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 2011, 30, 1800–1813.
Topol, A. W.; La Tulipe, D. C.; Shi, L.; Frank, D. J.; Bernstein, K.; Steen, S. E.; Kumar, A.; Singco, G. U.; Young, A. M.; Guarini, K. W. et al. Three-dimensional integrated circuits. IBM J. Res. Develop. 2006, 50, 491–506.
Xie, Y.; Loh, G. H.; Black, B.; Bernstein, K. Design space exploration for 3D architectures. ACM JETC 2006, 2, 65–103.
Lehtonen, E.; Poikonen, J. H.; Laiho, M. Memristive Stateful Logic. In Memristor Networks; Adamatzky, A.; Chua, L., Eds.; Springer International Publishing: Switzerland, 2014; pp 603–623.
Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B. D.; Adam, G. C.; Likharev, K. K.; Strukov, D. B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64.
Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.
Mikheev, E.; Hoskins, B. D.; Strukov, D. B.; Stemmer, S. Resistive switching and its suppression in Pt/Nb: SrTiO3 junctions. Nat. Commun. 2014, 5, 3990.
Sun, P. X.; Lu, N. D.; Li, L.; Li, Y. T.; Wang, H.; Lv, H. B.; Liu, Q.; Long, S. B.; Liu, S.; Liu, M. Thermal crosstalk in 3-dimensional RRAM crossbar array. Sci. Rep. 2015, 5, 13504.
Prezioso, M.; Kataeva, I.; Merrikh-Bayat, F.; Hoskins, B.; Adam, G.; Sota, T.; Likharev, K.; Strukov, D. Modeling and implementation of firing-rate neuromorphic-network classifiers with bilayer Pt/Al2O3/TiO2–x /Pt Memristors. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington DC, USA, 2015.
Feynman Grand Prize [Online]. https://www.foresight.org/GrandPrize.1.html (accessed May 5, 2016).
Yang, J. J.; Miao, F.; Pickett, M. D.; Ohlberg, D. A. A.; Stewart, D. R.; Lau, C. N.; Williams, R. S. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 2009, 20, 215201.
Varesi, J.; Majumdar, A. Scanning Joule expansion microscopy at nanometer scales. Appl. Phys. Lett. 1998, 72, 37–39.
Parhami, B. Computer Arithmetic: Algorithms and Hardware Designs; Oxford University Press: New York, NY, 2009.
Pi, S.; Lin, P.; Xia, Q. F. Cross point arrays of 8 nm × 8 nm memristive devices fabricated with nanoimprint lithography. J. Vac. Sci. Technol. B 2013, 31, 06FA02.
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Adam, G.C., Hoskins, B.D., Prezioso, M. et al. Optimized stateful material implication logic for three-dimensional data manipulation. Nano Res. 9, 3914–3923 (2016). https://doi.org/10.1007/s12274-016-1260-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-016-1260-1