Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction


Developments of nanostructured transition metal dichalcogenides (TMDs) materials as novel electrocatalyst candidates for oxygen reduction reaction (ORR) is a new strategy to promote the developments of non-precious metal ORR catalysts. In this work, a three-dimensional (3D) hybrid of rosebud-like MoSe2 nanostructures supported on reduced graphene oxide (rGO) nanosheets was successfully synthesized through a facile hydrothermal strategy. The prepared MoSe2@rGO hybrid nanostructure showed enhanced electrocatalytic activity for the ORR in alkaline medium compared to that of the pure MoSe2, rGO, and their simple physical mixture, which could benefit from the excellent oxygen adsorption ability of the abundantly exposed active edge sites of the ultrathin MoSe2 layers, the conductivity and aggregation-limiting effect of the rGO platform, as well as the unique 3D rosebud-like architecture of the hybrid material. The electrocatalytic activity of the MoSe2@rGO hybrid towards ORR was comparable to that of commercial Pt/C catalysts. And the promoted reaction was revealed to involve a nearly four-electron-dominated ORR process by analysis of the obtained Koutecky–Levich plots. The scanning electrochemical microscopy (SECM) technique, with the advantages of investigating of the local catalytic activity of samples with high spatial resolution and simultaneously evaluating activities of different catalysts in a single experiment, was further applied to investigate the local ORR electrocatalytic activity of MoSe2@rGO and compare it with those of other catalyst samples through applying different sample potentials. The excellent stability and methanol tolerance of the 3D nanostructured MoSe2@rGO hybrid against methanol further prove the 3D nanostructured MoSe2@rGO hybrid as a promising ORR electrocatalyst in alkaline solution for potential applications in fuel cells and metal–air batteries.

This is a preview of subscription content, access via your institution.


  1. [1]

    Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550.

    Article  Google Scholar 

  2. [2]

    Wang, S. Y.; Iyyamperumal, E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by Co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.

    Article  Google Scholar 

  3. [3]

    Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    Article  Google Scholar 

  4. [4]

    Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

    Article  Google Scholar 

  5. [5]

    Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

    Article  Google Scholar 

  6. [6]

    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  7. [7]

    Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

    Article  Google Scholar 

  8. [8]

    Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.

    Article  Google Scholar 

  9. [9]

    Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562.

    Article  Google Scholar 

  10. [10]

    Jin, H. L.; Huang, H. H.; He, Y. H.; Feng, X.; Wang, S.; Dai, L. M.; Wang, J. C. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 7588–7591.

    Article  Google Scholar 

  11. [11]

    Wang, M.; Wang, J. Z.; Hou, Y. Y.; Shi, D. Q.; Wexler, D.; Poynton, S. D.; Slade, R. C. T.; Zhang W. M.; Liu, H. K.; Chen, J. N-doped crumpled graphene derived from vapor phase deposition of PPy on graphene aerogel as an efficient oxygen reduction reaction electrocatalyst. ACS Appl. Mater. Interfaces 2015, 7, 7066–7072.

    Article  Google Scholar 

  12. [12]

    Parvez, K.; Yang, S. B.; Hernandez, Y.; Winter, A.; Turchanin, A.; Feng, X. L.; Mü llen, K. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. ACS Nano 2012, 6, 9541–9550.

    Article  Google Scholar 

  13. [13]

    Wang, Z. J.; Cao, X. H.; Ping, J. F.; Wang, Y. X.; Lin, T. T.; Huang, X.; Ma, Q. L.; Wang, F. K.; He, C. B.; Zhang, H. Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. Nanoscale 2015, 7, 9394–9398.

    Article  Google Scholar 

  14. [14]

    Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    Article  Google Scholar 

  15. [15]

    Sun, Y. F.; Gao, S.; Lei, F. C.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48, 3–12.

    Article  Google Scholar 

  16. [16]

    Rao, C. N. R.; Gopalakrishnan, K.; Maitra, U. Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 2015, 7, 7809–7832.

    Article  Google Scholar 

  17. [17]

    Tan, C. L.; Liu, Z. D.; Huang, W.; Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 2615–2628.

    Article  Google Scholar 

  18. [18]

    Gao, M. R.; Jiang, J.; Yu, S. H. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 2012, 8, 13–27.

    Article  Google Scholar 

  19. [19]

    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  20. [20]

    Min, Y. L.; He, G. Q.; Xu, Q. J.; Chen, Y. C. Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J. Mater. Chem. A 2014, 2, 2578–2584.

    Article  Google Scholar 

  21. [21]

    Zhang, Y. J.; Gong, Q. F.; Li, L.; Yang, H. C.; Li, Y. G.; Wang, Q. B. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res. 2015, 8, 1108–1115.

    Article  Google Scholar 

  22. [22]

    Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017.

    Article  Google Scholar 

  23. [23]

    Wang, T. Y.; Zhuo, J. Q.; Chen, Y.; Du, K. Z.; Apakonstantinou, P.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. Synergistic catalytic effect of MoS2 nanoparticles supported on gold nanoparticle films for a highly efficient oxygen reduction reaction. ChemCatChem 2014, 6, 1877–1881.

    Article  Google Scholar 

  24. [24]

    Du, C. C.; Huang, H.; Feng, X.; Wu, S. Y.; Song, W. B. Confining MoS2 nanodots in 3D porous nitrogen-doped graphene with amendable ORR performance. J. Mater. Chem. A 2015, 3, 7616–7622.

    Article  Google Scholar 

  25. [25]

    Huang, H.; Feng, X.; Du, C. C.; Song, W. B. High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity. Chem. Commun. 2015, 51, 7903–7906.

    Article  Google Scholar 

  26. [26]

    Xiao, B. B.; Zhang, P.; Han, L. P.; Wen, Z. Functional MoS2 by the Co/Ni doping as the catalyst for oxygen reduction reaction. Appl. Surf. Sci. 2015, 354, 221–228.

    Article  Google Scholar 

  27. [27]

    Guo, J. H.; Shi, Y. T.; Bai, X. G.; Wang, X. C.; Ma, T. L. Atomically thin MoSe2/graphene and WSe2/graphene nanosheets for the highly efficient oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 24397–24404.

    Article  Google Scholar 

  28. [28]

    Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L. N.; Scanlon, M. D.; Girault, H. H.; Liu, B. H. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326–5333.

    Article  Google Scholar 

  29. [29]

    Eng, A. Y. S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M. Electrochemistry of transition metal dichalcogenides: Strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 2014, 8, 12185–12198.

    Article  Google Scholar 

  30. [30]

    Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213–2219.

    Article  Google Scholar 

  31. [31]

    Xu, S. J.; Lei, Z. Y.; Wu, P. Y. Facile preparation of 3D MoS2/MoSe2 nanosheet–graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 16337–16347.

    Article  Google Scholar 

  32. [32]

    Liu, Z. Q.; Li, N.; Zhao, H. Y.; Du, Y. P. Colloidally synthesized MoSe2/graphene hybrid nanostructures as efficient electrocatalysts for hydrogen evolution. J. Mater. Chem. A 2015, 3, 19706–19710.

    Article  Google Scholar 

  33. [33]

    Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nø rskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  Google Scholar 

  34. [34]

    Yan, Y.; Ge, X. M.; Liu, Z. L.; Wang, J. Y.; Lee, J. M.; Wang, X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 2013, 5, 7768–7771.

    Article  Google Scholar 

  35. [35]

    Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    Article  Google Scholar 

  36. [36]

    Qu, B.; Yu, X. B.; Chen, Y. J.; Zhu, C. L.; Li, C. Y.; Yin, Z. X.; Zhang, X. T. Ultrathin MoSe2 nanosheets decorated on carbon fiber cloth as binder-free and high-performance electrocatalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 2015, 7, 14170–14175.

    Article  Google Scholar 

  37. [37]

    Zhang, Y.; Liu, Z. Q.; Zhao, H. Y.; Du, Y. P. MoSe2 nanosheets grown on carbon cloth with superior electrochemical performance as flexible electrode for sodium ion batteries. RSC Adv. 2016, 6, 1440–1444.

    Article  Google Scholar 

  38. [38]

    Tang, H.; Dou, K. P.; Kaun, C. C.; Kuang, Q.; Yang, S. H. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. J. Mater. Chem. A 2014, 2, 360–364.

    Article  Google Scholar 

  39. [39]

    Mao, S.; Wen, Z. H.; Ci, S. Q.; Guo, X. R.; Ostrikov, K. K.; Chen, J. H. Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 2015, 11, 414–419.

    Article  Google Scholar 

  40. [40]

    Jia, L. P.; Sun, X.; Jiang, Y. M.; Yu, S. J.; Wang, C. M. A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1814–1820.

    Article  Google Scholar 

  41. [41]

    Zhang, Z. A.; Fu, Y.; Yang, X.; Qu, Y. H.; Zhang, Z. Y. Hierarchical MoSe2 nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance. ChemNanoMat 2015, 1, 409–414.

    Article  Google Scholar 

  42. [42]

    Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989, 61, 132–138.

    Article  Google Scholar 

  43. [43]

    Wittstock, G.; Burchardt, M.; Pust, S. E.; Shen, Y.; Zhao, C. Scanning electrochemical microscopy for direct imaging of reaction rates. Angew. Chem., Int. Ed. 2007, 46, 1584–1617.

    Article  Google Scholar 

  44. [44]

    Li, F.; Bertoncello, P.; Ciani, I.; Mantovani, G.; Unwin, P. R. Incorporation of functionalized palladium nanoparticles within ultrathin nafion films: A nanostructured composite for electrolytic and redox-mediated hydrogen evolution. Adv. Funct. Mater. 2008, 18, 1685–1693.

    Article  Google Scholar 

  45. [45]

    Bertoncello, P. Advances on scanning electrochemical microscopy (SECM) for energy. Energy Environ. Sci. 2010, 3, 1620–1633.

    Article  Google Scholar 

  46. [46]

    Lai, S. C. S.; Macpherson, J. V.; Unwin, P. R. In situ scanning electrochemical probe microscopy for energy applications. MRS Bull. 2012, 37, 668–674.

    Article  Google Scholar 

  47. [47]

    Wain, A. J. Scanning electrochemical microscopy for combinatorial screening applications: A mini-review. Electrochem. Commun. 2014, 46, 9–12.

    Article  Google Scholar 

  48. [48]

    Byers, J. C.; Gü ell, A. G.; Unwin, P. R. Nanoscale electrocatalysis: Visualizing oxygen reduction at pristine, kinked, and oxidized sites on individual carbon nanotubes. J. Am. Chem. Soc. 2014, 136, 11252–11255.

    Article  Google Scholar 

  49. [49]

    Zhang, B. Y.; Yuan, H. L.; Zhang, X. F.; Huang, D. K.; Li, S. H.; Wang, M. K.; Shen, Y. Investigation of regeneration kinetics in quantum-dots-sensitized solar cells with scanning electrochemical microscopy. ACS Appl. Mater. Interfaces 2014, 6, 20913–20918.

    Article  Google Scholar 

  50. [50]

    Zhang, B. Y.; Zhang, X. F.; Xiao, X.; Shen, Y. Photoelectrochemical water splitting system—A study of interfacial charge transfer with scanning electrochemical microscopy. ACS Appl. Mater. Interfaces 2016, 8, 1606–1614.

    Article  Google Scholar 

  51. [51]

    Eckhard, K.; Chen, X. X.; Turcu, F.; Schuhmann, W. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity. Phys. Chem. Chem. Phys. 2006, 8, 5359–5365.

    Article  Google Scholar 

  52. [52]

    Chen, X. X.; Eckhard, K.; Zhou, M.; Bron, M.; Schuhmann, W. Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon. Anal. Chem. 2009, 81, 7597–7603.

    Article  Google Scholar 

  53. [53]

    Kundu, S.; Nagaiah, T. C.; Xia, W.; Wang, Y. M.; van Dommele, S.; Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann, W. et al. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C 2009, 113, 14302–14310.

    Article  Google Scholar 

  54. [54]

    Ma, L.; Zhou, H.; Xin, S. L.; Xiao, C. H.; Li, F.; Ding, S. J. Characterization of local electrocatalytical activity of nanosheet-structured ZnCo2O4/carbon nanotubes composite for oxygen reduction reaction with scanning electrochemical microscopy. Electrochim. Acta 2015, 178, 767–777.

    Article  Google Scholar 

  55. [55]

    Fonseca, S. M.; Barker, A. L.; Ahmed, S.; Kemp, T. J.; Unwin, P. R. Direct observation of oxygen depletion and product formation during photocatalysis at a TiO2 surface using scanning electrochemical microscopy. Chem. Commun. 2003, 1002–1003.

    Google Scholar 

  56. [56]

    Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  Google Scholar 

  57. [57]

    Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942.

    Article  Google Scholar 

  58. [58]

    Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4- graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.

    Article  Google Scholar 

  59. [59]

    Wang, H. L.; Robinson, J. T.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.

    Article  Google Scholar 

  60. [60]

    Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. G.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  61. [61]

    Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.

    Article  Google Scholar 

  62. [62]

    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  Google Scholar 

  63. [63]

    Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.

    Article  Google Scholar 

  64. [64]

    Abdallah, W. A.; Nelson, A. E. Characterization of MoSe2(0001) and ion-sputtered MoSe2 by XPS. J. Mater. Sci. 2005, 40, 2679–2681.

    Article  Google Scholar 

  65. [65]

    Boscher, N. D.; Carmalt, C. J.; Parkin, I. P. Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces. J. Mater. Chem. 2006, 16, 122–127.

    Article  Google Scholar 

  66. [66]

    Wan, D. Y.; Yang, C. Y.; Lin, T. Q.; Tang, Y. F.; Zhou, M. Zhong, Y. J.; Huang, F. Q.; Lin, J. H. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications. ACS Nano 2012, 6, 9068–9078.

    Article  Google Scholar 

  67. [67]

    Lu, L.; Hao, Q. L.; Lei, W.; Xia, X. F.; Liu, P.; Sun, D. P.; Wang, X.; Yang, X. J. Well-combined magnetically separable hybrid cobalt ferrite/nitrogen-doped graphene as efficient catalyst with superior performance for oxygen reduction reaction. Small 2015, 11, 5833–5843.

    Article  Google Scholar 

  68. [68]

    Li, R.; Wei, Z. D.; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133–4142.

    Article  Google Scholar 

  69. [69]

    Zhang, Y. J.; Chu, M.; Yang, L.; Deng, W. F.; Tan, Y. M.; Ma, M.; Xie, Q. J. Synthesis and oxygen reduction properties of three-dimensional sulfur-doped graphene networks. Chem. Commun. 2014, 50, 6382–6385.

    Article  Google Scholar 

  70. [70]

    Yadav, R. M.; Wu, J. J.; Kochandra, R.; Ma, L. L.; Tiwary, C. S.; Ge, L. H.; Ye, G. L.; Vajtai, R.; Lou, J.; Ajayan, P. M. Carbon nitrogen nanotubes as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2015, 7, 11991–12000.

    Article  Google Scholar 

  71. [71]

    Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. F. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem., Int. Ed. 2014, 53, 3675–3679.

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Fei Li or Yaping Du.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xin, S., Liu, Z., Ma, L. et al. Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction. Nano Res. 9, 3795–3811 (2016).

Download citation


  • MoSe2@rGO hybrid
  • oxygen reduction reaction
  • electrocatalyst
  • scanning electrochemical microscopy