Observing the evolution of graphene layers at high current density

Abstract

Graphene has demonstrated its potential in several practical applications owing to its remarkable electronic and physical properties. In this study, we successfully fabricated a suspended graphene device with a width down to 20 nm. The morphological evolution of graphene under various electric field effects was systematically examined using an in-situ transmission electron microscope (TEM). The hourglass-shaped graphene sample instantly broke apart at 7.5 mA, indicating an impressive breakdown current density. The current-carrying capacity was calculated to be ~1.6 × 109 A·cm–2, which is several orders higher than that of copper. The current-carrying capacity depended on the resistivity of graphene. In addition, atomic volume changes occurred in the multilayer graphene samples due to surface diffusion and Ostwald ripening (OR), indicating that the breakdown mechanism is well approximated by the electric field. This study not only provides a theory to explain the breakdown behavior but also presents the effects on materials contacted with a graphene layer used as the transmission path.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Wu, Y. Q.; Lin, Y. M.; Bol, A. A.; Jenkins, K. A.; Xia, F. N.; Farmer, D. B.; Zhu, Y.; Avouris, P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 2011, 472, 74–78.

    Article  Google Scholar 

  2. [2]

    Lu, Y.; Goldsmith, B. R.; Kybert, N. J.; Johnson, A. T. C. DNA-decorated graphene chemical sensors. Appl. Phys. Lett. 2010, 97, 083107.

    Google Scholar 

  3. [3]

    Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  Google Scholar 

  4. [4]

    Merchant, C. A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M. D.; Venta, K.; Luo, Z. T.; Johnson, A. T. C.; Drndic, M. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 2915–2921.

    Article  Google Scholar 

  5. [5]

    Schneider, G. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 3163–3167.

    Article  Google Scholar 

  6. [6]

    Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre transelectrode membrane. Nature 2010, 467, 190–193.

    Article  Google Scholar 

  7. [7]

    Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.

    Article  Google Scholar 

  8. [8]

    Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    Article  Google Scholar 

  9. [9]

    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    Article  Google Scholar 

  10. [10]

    Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

    Article  Google Scholar 

  11. [11]

    Lu, Y.; Merchant, C. A.; Drndic, M.; Johnson, A. T. C. In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. Nano Lett. 2011, 11, 5184–5188.

    Article  Google Scholar 

  12. [12]

    Barreiro, A.; Börrnert, F.; Rümmeli, M. H.; Büchner, B.; Vandersypen, L. M. K. Graphene at high bias: Cracking, layer by layer sublimation, and fusing. Nano Lett. 2012, 12, 1873–1878.

    Article  Google Scholar 

  13. [13]

    Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A.-P.; Jiang, Z. G.; Conrad, E. H.; Berger, C. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 2014, 506, 349–354.

    Article  Google Scholar 

  14. [14]

    Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  15. [15]

    Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896.

    Article  Google Scholar 

  16. [16]

    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Article  Google Scholar 

  17. [17]

    Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.

    Article  Google Scholar 

  18. [18]

    Murali, R.; Yang, Y. X.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.

    Article  Google Scholar 

  19. [19]

    Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 2008, 321, 1066–1069.

    Article  Google Scholar 

  20. [20]

    Chen, L. J.; Wu, W. W. In situ TEM investigation of dynamical changes of nanostructures. Mat. Sci. Eng. R 2010, 70, 303–319.

    Article  Google Scholar 

  21. [21]

    Chen, J. Y.; Huang, C. W.; Chiu, C. H.; Huang, Y. T.; Wu, W. W. Switching kinetic of VCM-based memristor: Evolution and positioning of nanofilament. Adv. Mater. 2015, 27, 5028–5033.

    Article  Google Scholar 

  22. [22]

    Huang, Y. T.; Huang, C. W.; Chen, J. Y.; Ting, Y. H.; Lu, K. C.; Chueh, Y. L.; Wu, W. W. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory. ACS Nano 2014, 8, 9457–9462.

    Article  Google Scholar 

  23. [23]

    Huang, C. W.; Chen, J. Y.; Chiu, C. H.; Wu, W. W. Revealing controllable nanowire transformation through cationic exchange for RRAM application. Nano Lett. 2014, 14, 2759–2763.

    Article  Google Scholar 

  24. [24]

    Chen, J. Y.; Hsin, C. L.; Huang, C. W.; Chiu, C. H.; Huang, Y. T.; Lin, S. J.; Wu, W. W.; Chen, L. J. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 2013, 13, 3671–3677.

    Article  Google Scholar 

  25. [25]

    Hsin, C. L.; Huang, C. W.; Chen, J. Y.; Liao, K. C.; Liu, P. L.; Wu, W. W.; Chen, L. J. Direct observation of sublimation behaviors in one-dimensional In2Se3/In2O3 nanoheterostructures. Anal. Chem. 2015, 87, 5584–5588.

    Article  Google Scholar 

  26. [26]

    Huang, C. W.; Hsin, C. L.; Wang, C. W.; Chu, F. H.; Kao, C. Y.; Chen, J. Y.; Huang, Y. T.; Lu, K. C.; Wu, W. W.; Chen, L. J. Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures. Nanoscale 2012, 4, 4702–4706.

    Article  Google Scholar 

  27. [27]

    Chen, K. C.; Liao, C. N.; Wu, W. W.; Chen, L. J. Direct observation of electromigration induced surface atomic steps in Cu lines by in situ transmission electron microscopy. Appl. Phys. Lett. 2007, 90, 203101.

    Article  Google Scholar 

  28. [28]

    Liu, X. F.; Xu, T.; Wu, X.; Zhang, Z. H.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R. et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 2013, 4, 1776.

    Article  Google Scholar 

  29. [29]

    Xu, T.; Yin, K. B.; Xie, X.; He, L. B.; Wang, B. J.; Sun, L. T. Size-dependent evolution of graphene nanopores under thermal excitation. Small 2012, 8, 3422–3426.

    Article  Google Scholar 

  30. [30]

    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  31. [31]

    Börrnert, F.; Barreiro, A.; Wolf, D.; Katsnelson, M. I.; Büchner, B.; Vandersypen, L. M. K.; Rümmeli, M. H. Lattice expansion in seamless bilayer graphene constrictions at high bias. Nano Lett. 2012, 12, 4455–4459.

    Article  Google Scholar 

  32. [32]

    Jia, X. T.; Hofmann, M.; Meunier, V.; Sumpter, B. G.; Campos-Delgado, J.; Romo-Herrera, J. M.; Son, H.; Hsieh, Y. P.; Reina, A.; Kong, J. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701–1705.

    Article  Google Scholar 

  33. [33]

    Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

    Article  Google Scholar 

  34. [34]

    Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.

    Article  Google Scholar 

  35. [35]

    Ostwald, W. Studien über die bildung und umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 1897, 22, 289–330.

    Google Scholar 

  36. [36]

    Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen-Wei Wu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, CW., Chen, JY., Chiu, CH. et al. Observing the evolution of graphene layers at high current density. Nano Res. 9, 3663–3670 (2016). https://doi.org/10.1007/s12274-016-1237-0

Download citation

Keywords

  • graphene
  • breakdown
  • high current density
  • in-situ transmission electron microscope (TEM)
  • Ostwald ripening