Nano Research

, Volume 9, Issue 12, pp 3663–3670 | Cite as

Observing the evolution of graphene layers at high current density

  • Chun-Wei Huang
  • Jui-Yuan Chen
  • Chung-Hua Chiu
  • Cheng-Lun Hsin
  • Tseung-Yuen Tseng
  • Wen-Wei Wu
Research Article


Graphene has demonstrated its potential in several practical applications owing to its remarkable electronic and physical properties. In this study, we successfully fabricated a suspended graphene device with a width down to 20 nm. The morphological evolution of graphene under various electric field effects was systematically examined using an in-situ transmission electron microscope (TEM). The hourglass-shaped graphene sample instantly broke apart at 7.5 mA, indicating an impressive breakdown current density. The current-carrying capacity was calculated to be ~1.6 × 109 A·cm–2, which is several orders higher than that of copper. The current-carrying capacity depended on the resistivity of graphene. In addition, atomic volume changes occurred in the multilayer graphene samples due to surface diffusion and Ostwald ripening (OR), indicating that the breakdown mechanism is well approximated by the electric field. This study not only provides a theory to explain the breakdown behavior but also presents the effects on materials contacted with a graphene layer used as the transmission path.


graphene breakdown high current density in-situ transmission electron microscope (TEM) Ostwald ripening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1237_MOESM1_ESM.pdf (1.7 mb)
Observing the evolution of graphene layers at high current density
12274_2016_1237_MOESM2_ESM.avi (7.3 mb)
Supplementary material, approximately 7.34 MB.
12274_2016_1237_MOESM3_ESM.avi (4.5 mb)
Supplementary material, approximately 4.52 MB.
12274_2016_1237_MOESM4_ESM.avi (4.8 mb)
Supplementary material, approximately 4.81 MB.


  1. [1]
    Wu, Y. Q.; Lin, Y. M.; Bol, A. A.; Jenkins, K. A.; Xia, F. N.; Farmer, D. B.; Zhu, Y.; Avouris, P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 2011, 472, 74–78.CrossRefGoogle Scholar
  2. [2]
    Lu, Y.; Goldsmith, B. R.; Kybert, N. J.; Johnson, A. T. C. DNA-decorated graphene chemical sensors. Appl. Phys. Lett. 2010, 97, 083107.Google Scholar
  3. [3]
    Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.CrossRefGoogle Scholar
  4. [4]
    Merchant, C. A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M. D.; Venta, K.; Luo, Z. T.; Johnson, A. T. C.; Drndic, M. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 2915–2921.CrossRefGoogle Scholar
  5. [5]
    Schneider, G. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. DNA translocation through graphene nanopores. Nano Lett. 2010, 10, 3163–3167.CrossRefGoogle Scholar
  6. [6]
    Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre transelectrode membrane. Nature 2010, 467, 190–193.CrossRefGoogle Scholar
  7. [7]
    Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.CrossRefGoogle Scholar
  8. [8]
    Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.CrossRefGoogle Scholar
  9. [9]
    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.CrossRefGoogle Scholar
  10. [10]
    Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.CrossRefGoogle Scholar
  11. [11]
    Lu, Y.; Merchant, C. A.; Drndic, M.; Johnson, A. T. C. In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. Nano Lett. 2011, 11, 5184–5188.CrossRefGoogle Scholar
  12. [12]
    Barreiro, A.; Börrnert, F.; Rümmeli, M. H.; Büchner, B.; Vandersypen, L. M. K. Graphene at high bias: Cracking, layer by layer sublimation, and fusing. Nano Lett. 2012, 12, 1873–1878.CrossRefGoogle Scholar
  13. [13]
    Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A.-P.; Jiang, Z. G.; Conrad, E. H.; Berger, C. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 2014, 506, 349–354.CrossRefGoogle Scholar
  14. [14]
    Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.CrossRefGoogle Scholar
  15. [15]
    Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896.CrossRefGoogle Scholar
  16. [16]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefGoogle Scholar
  17. [17]
    Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.CrossRefGoogle Scholar
  18. [18]
    Murali, R.; Yang, Y. X.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.CrossRefGoogle Scholar
  19. [19]
    Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 2008, 321, 1066–1069.CrossRefGoogle Scholar
  20. [20]
    Chen, L. J.; Wu, W. W. In situ TEM investigation of dynamical changes of nanostructures. Mat. Sci. Eng. R 2010, 70, 303–319.CrossRefGoogle Scholar
  21. [21]
    Chen, J. Y.; Huang, C. W.; Chiu, C. H.; Huang, Y. T.; Wu, W. W. Switching kinetic of VCM-based memristor: Evolution and positioning of nanofilament. Adv. Mater. 2015, 27, 5028–5033.CrossRefGoogle Scholar
  22. [22]
    Huang, Y. T.; Huang, C. W.; Chen, J. Y.; Ting, Y. H.; Lu, K. C.; Chueh, Y. L.; Wu, W. W. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory. ACS Nano 2014, 8, 9457–9462.CrossRefGoogle Scholar
  23. [23]
    Huang, C. W.; Chen, J. Y.; Chiu, C. H.; Wu, W. W. Revealing controllable nanowire transformation through cationic exchange for RRAM application. Nano Lett. 2014, 14, 2759–2763.CrossRefGoogle Scholar
  24. [24]
    Chen, J. Y.; Hsin, C. L.; Huang, C. W.; Chiu, C. H.; Huang, Y. T.; Lin, S. J.; Wu, W. W.; Chen, L. J. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 2013, 13, 3671–3677.CrossRefGoogle Scholar
  25. [25]
    Hsin, C. L.; Huang, C. W.; Chen, J. Y.; Liao, K. C.; Liu, P. L.; Wu, W. W.; Chen, L. J. Direct observation of sublimation behaviors in one-dimensional In2Se3/In2O3 nanoheterostructures. Anal. Chem. 2015, 87, 5584–5588.CrossRefGoogle Scholar
  26. [26]
    Huang, C. W.; Hsin, C. L.; Wang, C. W.; Chu, F. H.; Kao, C. Y.; Chen, J. Y.; Huang, Y. T.; Lu, K. C.; Wu, W. W.; Chen, L. J. Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures. Nanoscale 2012, 4, 4702–4706.CrossRefGoogle Scholar
  27. [27]
    Chen, K. C.; Liao, C. N.; Wu, W. W.; Chen, L. J. Direct observation of electromigration induced surface atomic steps in Cu lines by in situ transmission electron microscopy. Appl. Phys. Lett. 2007, 90, 203101.CrossRefGoogle Scholar
  28. [28]
    Liu, X. F.; Xu, T.; Wu, X.; Zhang, Z. H.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R. et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 2013, 4, 1776.CrossRefGoogle Scholar
  29. [29]
    Xu, T.; Yin, K. B.; Xie, X.; He, L. B.; Wang, B. J.; Sun, L. T. Size-dependent evolution of graphene nanopores under thermal excitation. Small 2012, 8, 3422–3426.CrossRefGoogle Scholar
  30. [30]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  31. [31]
    Börrnert, F.; Barreiro, A.; Wolf, D.; Katsnelson, M. I.; Büchner, B.; Vandersypen, L. M. K.; Rümmeli, M. H. Lattice expansion in seamless bilayer graphene constrictions at high bias. Nano Lett. 2012, 12, 4455–4459.CrossRefGoogle Scholar
  32. [32]
    Jia, X. T.; Hofmann, M.; Meunier, V.; Sumpter, B. G.; Campos-Delgado, J.; Romo-Herrera, J. M.; Son, H.; Hsieh, Y. P.; Reina, A.; Kong, J. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701–1705.CrossRefGoogle Scholar
  33. [33]
    Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.CrossRefGoogle Scholar
  34. [34]
    Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.CrossRefGoogle Scholar
  35. [35]
    Ostwald, W. Studien über die bildung und umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 1897, 22, 289–330.Google Scholar
  36. [36]
    Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chun-Wei Huang
    • 1
  • Jui-Yuan Chen
    • 1
  • Chung-Hua Chiu
    • 1
  • Cheng-Lun Hsin
    • 2
  • Tseung-Yuen Tseng
    • 3
  • Wen-Wei Wu
    • 1
  1. 1.Department of Materials Science and EngineeringChiao Tung UniversityHsinchiuChina
  2. 2.Department of Electrical EngineeringCentral UniversityChung-Li City, TaoyuanChina
  3. 3.Department of Electronics Engineering and Institute of ElectronicsChiao Tung UniversityHsinchiuChina

Personalised recommendations