Silicene nanoribbons on transition metal dichalcogenide substrates: Effects on electronic structure and ballistic transport

Abstract

The idea of stacking multiple monolayers of different two-dimensional materials has become a global pursuit. In this work, a silicene armchair nanoribbon of width W and van der Waals-bonded to different transition-metal dichalcogenide (TMD) bilayer substrates MoX2 and WX2, where X = S, Se, Te is considered. The orbital resolved electronic structure and ballistic transport properties of these systems are simulated by employing van der Waals-corrected density functional theory and nonequilibrium Green’s functions. We find that the lattice mismatch with the underlying substrate determines the electronic structure, correlated with the silicene buckling distortion and ultimately with the contact resistance of the two-terminal system. The smallest lattice mismatch, obtained with the MoTe2 substrate, results in the silicene ribbon properties coming close to those of a freestanding one. With the TMD bilayer acting as a dielectric layer, the electronic structure is tunable from a direct to an indirect semiconducting layer, and subsequently to a metallic electronic dispersion layer, with a moderate applied perpendicular electric field.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  2. [2]

    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  3. [3]

    Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554.

    Article  Google Scholar 

  4. [4]

    Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  Google Scholar 

  5. [5]

    Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Twodimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.

    Article  Google Scholar 

  6. [6]

    Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicone. New J. Phys. 2014, 16, 095002.

    Article  Google Scholar 

  7. [7]

    Zhu, F.-F.; Chen, W.-J.; Xu, Y.; Gao, C.-L.; Guan, D.-D.; Liu, C. H.; Qian, D.; Zhang, S.-C.; Jia, J.-F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

    Article  Google Scholar 

  8. [8]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  9. [9]

    Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene Heterostructures. ACS Nano 2013, 7, 3246–3252.

    Article  Google Scholar 

  10. [10]

    Lopez-Sanchez, O.; Alarcon Llado, E.; Koman, V.; Fontcuberta i Morral, A.; Radenovic, A.; Kis, A. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 2014, 8, 3042–3048.

    Article  Google Scholar 

  11. [11]

    Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. F.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vuckovic, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

    Article  Google Scholar 

  12. [12]

    Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

    Article  Google Scholar 

  13. [13]

    Coy Diaz, H.; Avila, J.; Chen, C. Y.; Addou, R.; Asensio, M. C.; Batzill, M. Direct observation of interlayer hybridization and dirac relativistic carriers in graphene/MoS2 van der Waals heterostructures. Nano Lett. 2015, 15, 1135–1140.

    Article  Google Scholar 

  14. [14]

    Reich, E. S. Phosphorene excites materials scientists. Nature 2014, 506, 19.

    Article  Google Scholar 

  15. [15]

    Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

    Article  Google Scholar 

  16. [16]

    Molle, A.; Lamperti, A.; Rotta, D.; Fanciulli, M.; Cinquanta, E.; Grazianetti, C. Electron confinement at the Si/MoS2 heterosheet interface. Adv. Mater. Interfaces 2016, 3, 1500619.

    Article  Google Scholar 

  17. [17]

    Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 1994, 50, 14916–14922.

    Article  Google Scholar 

  18. [18]

    Houssa, M.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Electronic properties of two-dimensional hexagonal germanium. Appl. Phys. Lett. 2010, 96, 082111.

    Article  Google Scholar 

  19. [19]

    Lu, A. K. A. private communications

  20. [20]

    Le Lay, G.; Aufray, B.; Léandri, C.; Oughaddou, H.; Biberian, J.-P.; De Padova, P.; Dávila, M. E.; Ealet, B.; Kara, A. Physics and chemistry of silicene nano-ribbons. Appl. Surf. Sci. 2009, 256, 524–529.

    Article  Google Scholar 

  21. [21]

    De Padova, P.; Perfetti, P.; Olivieri, B.; Quaresima, C.; Ottoviani, C.; Le Lay, G. 1D graphene-like silicon systems: Silicene nano-ribbons. J. Phys.: Condens. Matter 2012, 24, 223001.

    Google Scholar 

  22. [22]

    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  Google Scholar 

  23. [23]

    Schwierz, F.; Pezoldt, J.; Grazner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.

    Article  Google Scholar 

  24. [24]

    van den Broek, B.; Houssa, M.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Current–voltage characteristics of armchair Sn nanoribbons. Phys. Status Solidi RRL 2014, 8, 931–934.

    Article  Google Scholar 

  25. [25]

    van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Two-dimensional hexagonal tin: Ab initio geometry, stability, electronic structure and functionalization. 2D Mater. 2014, 1, 021004.

    Article  Google Scholar 

  26. [26]

    Xu, Y.; Yan, B. H.; Zhang, H.-J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S.-C. Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

    Article  Google Scholar 

  27. [27]

    Houssa, M.; van den Broek, B.; Iordanidou, K.; Lu, A. K. A.; Pourtois, G.; Locquet, J. P.; Afanas'ev, V. V.; Stesmans, A. Topological to trivial insulating phase transition in stanene. Nano Res. 2016, 9, 774–778.

    Article  Google Scholar 

  28. [28]

    Kohn, W. Nobel lecture: Electronic structure of matter-Wave functions and density functionals. Rev. Mod. Phys. 1999, 71, 1253.

    Article  Google Scholar 

  29. [29]

    Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 2002, 14, 2745.

    Google Scholar 

  30. [30]

    Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates. 2D Mater. 2014, 1, 011010.

    Article  Google Scholar 

  31. [31]

    Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

    Article  Google Scholar 

  32. [32]

    Rivero, P.; García-Suárez, V. M.; Pereñiquez, D.; Utt, K.; Yang, Y. R.; Bellaiche, L.; Park, K.; Ferrer, J.; Barraza-Lopez, S. Systematic pseudopotentials from reference eigenvalue sets for DFT calculations. Comp. Mat. Sci. 2015, 98, 372–389.

    Article  Google Scholar 

  33. [33]

    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  34. [34]

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  35. [35]

    Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    Article  Google Scholar 

  36. [36]

    Pang, Q.; Zhang, Y.; Zhang, J.-M.; Li, V.; Xu, K.-W. Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale 2011, 3, 4330–4338.

    Article  Google Scholar 

  37. [37]

    Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754.

    Article  Google Scholar 

  38. [38]

    Brandbyge, M.; Mozos, J.-L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

    Article  Google Scholar 

  39. [39]

    Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207–6215.

    Article  Google Scholar 

  40. [40]

    Nazarov, Y. V.; Blanter, Y. M. Quantum Transport: Introduction to Nanoscience; Cambridge University Press: Cambridge, 2009.

    Google Scholar 

  41. [41]

    Cahangirov, S.; Topsakal, M.; Atatürk, E.; Sahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  Google Scholar 

  42. [42]

    Topsakal, M.; Bagci, V. M. K.; Ciraci, S. Current-voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys. Rev. B 2010, 81, 205437.

    Article  Google Scholar 

  43. [43]

    Kaneko, S.; Tsuchiya, H.; Kamakura, Y.; Mori, N.; Ogawa, M. Theoretical performance estimation of silicene, germanene, and graphene nanoribbon field-effect transistors under ballistic transport. Appl. Phys. Express 2014, 7, 035102.

    Article  Google Scholar 

  44. [44]

    van den Broek, B.; Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas' ev, V. V.; Stesmans, A. Functional silicene and stanene nanoribbons compared to graphene: Electronic structure and transport. 2D Mater. 2016, 3, 015001.

    Article  Google Scholar 

  45. [45]

    Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

    Article  Google Scholar 

  46. [46]

    Gao, N.; Li, J. C.; Jiang, Q. Tunable band gaps in silicene–MoS2 heterobilayers. Phys. Chem. Chem. Phys. 2014, 16, 11673–11678.

    Article  Google Scholar 

  47. [47]

    Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

    Article  Google Scholar 

  48. [48]

    Bader analysis needs a larger kinetic energy cutoff (350 Rydberg) in order to find the zero-flux surfaces and give the atomic charge populations.

  49. [49]

    Weinberg, Z. A. Tunneling of electrons from Si into thermally grown SiO2. Solid-State Electron. 1977, 20, 11–18.

    Article  Google Scholar 

  50. [50]

    Drummond, N. D.; Zólyomi, V.; Fal'ko, V. I. Electrically tunable band gap in silicone. Phys. Rev. B 2012, 85, 075423.

    Article  Google Scholar 

  51. [51]

    Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 2013, 15, 3702–3705.

    Article  Google Scholar 

  52. [52]

    Natori, K. Ballistic metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 1994, 76, 4879.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bas van den Broek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van den Broek, B., Houssa, M., Lu, A. et al. Silicene nanoribbons on transition metal dichalcogenide substrates: Effects on electronic structure and ballistic transport. Nano Res. 9, 3394–3406 (2016). https://doi.org/10.1007/s12274-016-1217-4

Download citation

Keywords

  • silicene
  • transition metal dichalcogenides
  • van der Waals heterostructure
  • electronic structure
  • ballistic transport