Advertisement

Silicene nanoribbons on transition metal dichalcogenide substrates: Effects on electronic structure and ballistic transport

  • 283 Accesses

  • 2 Citations

Abstract

The idea of stacking multiple monolayers of different two-dimensional materials has become a global pursuit. In this work, a silicene armchair nanoribbon of width W and van der Waals-bonded to different transition-metal dichalcogenide (TMD) bilayer substrates MoX2 and WX2, where X = S, Se, Te is considered. The orbital resolved electronic structure and ballistic transport properties of these systems are simulated by employing van der Waals-corrected density functional theory and nonequilibrium Green’s functions. We find that the lattice mismatch with the underlying substrate determines the electronic structure, correlated with the silicene buckling distortion and ultimately with the contact resistance of the two-terminal system. The smallest lattice mismatch, obtained with the MoTe2 substrate, results in the silicene ribbon properties coming close to those of a freestanding one. With the TMD bilayer acting as a dielectric layer, the electronic structure is tunable from a direct to an indirect semiconducting layer, and subsequently to a metallic electronic dispersion layer, with a moderate applied perpendicular electric field.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

  2. [2]

    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

  3. [3]

    Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554.

  4. [4]

    Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

  5. [5]

    Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Twodimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.

  6. [6]

    Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicone. New J. Phys. 2014, 16, 095002.

  7. [7]

    Zhu, F.-F.; Chen, W.-J.; Xu, Y.; Gao, C.-L.; Guan, D.-D.; Liu, C. H.; Qian, D.; Zhang, S.-C.; Jia, J.-F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

  8. [8]

    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

  9. [9]

    Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene Heterostructures. ACS Nano 2013, 7, 3246–3252.

  10. [10]

    Lopez-Sanchez, O.; Alarcon Llado, E.; Koman, V.; Fontcuberta i Morral, A.; Radenovic, A.; Kis, A. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 2014, 8, 3042–3048.

  11. [11]

    Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. F.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vuckovic, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

  12. [12]

    Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

  13. [13]

    Coy Diaz, H.; Avila, J.; Chen, C. Y.; Addou, R.; Asensio, M. C.; Batzill, M. Direct observation of interlayer hybridization and dirac relativistic carriers in graphene/MoS2 van der Waals heterostructures. Nano Lett. 2015, 15, 1135–1140.

  14. [14]

    Reich, E. S. Phosphorene excites materials scientists. Nature 2014, 506, 19.

  15. [15]

    Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

  16. [16]

    Molle, A.; Lamperti, A.; Rotta, D.; Fanciulli, M.; Cinquanta, E.; Grazianetti, C. Electron confinement at the Si/MoS2 heterosheet interface. Adv. Mater. Interfaces 2016, 3, 1500619.

  17. [17]

    Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 1994, 50, 14916–14922.

  18. [18]

    Houssa, M.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Electronic properties of two-dimensional hexagonal germanium. Appl. Phys. Lett. 2010, 96, 082111.

  19. [19]

    Lu, A. K. A. private communications

  20. [20]

    Le Lay, G.; Aufray, B.; Léandri, C.; Oughaddou, H.; Biberian, J.-P.; De Padova, P.; Dávila, M. E.; Ealet, B.; Kara, A. Physics and chemistry of silicene nano-ribbons. Appl. Surf. Sci. 2009, 256, 524–529.

  21. [21]

    De Padova, P.; Perfetti, P.; Olivieri, B.; Quaresima, C.; Ottoviani, C.; Le Lay, G. 1D graphene-like silicon systems: Silicene nano-ribbons. J. Phys.: Condens. Matter 2012, 24, 223001.

  22. [22]

    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

  23. [23]

    Schwierz, F.; Pezoldt, J.; Grazner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.

  24. [24]

    van den Broek, B.; Houssa, M.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Current–voltage characteristics of armchair Sn nanoribbons. Phys. Status Solidi RRL 2014, 8, 931–934.

  25. [25]

    van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Two-dimensional hexagonal tin: Ab initio geometry, stability, electronic structure and functionalization. 2D Mater. 2014, 1, 021004.

  26. [26]

    Xu, Y.; Yan, B. H.; Zhang, H.-J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S.-C. Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

  27. [27]

    Houssa, M.; van den Broek, B.; Iordanidou, K.; Lu, A. K. A.; Pourtois, G.; Locquet, J. P.; Afanas'ev, V. V.; Stesmans, A. Topological to trivial insulating phase transition in stanene. Nano Res. 2016, 9, 774–778.

  28. [28]

    Kohn, W. Nobel lecture: Electronic structure of matter-Wave functions and density functionals. Rev. Mod. Phys. 1999, 71, 1253.

  29. [29]

    Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 2002, 14, 2745.

  30. [30]

    Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates. 2D Mater. 2014, 1, 011010.

  31. [31]

    Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

  32. [32]

    Rivero, P.; García-Suárez, V. M.; Pereñiquez, D.; Utt, K.; Yang, Y. R.; Bellaiche, L.; Park, K.; Ferrer, J.; Barraza-Lopez, S. Systematic pseudopotentials from reference eigenvalue sets for DFT calculations. Comp. Mat. Sci. 2015, 98, 372–389.

  33. [33]

    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

  34. [34]

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 2006, 27, 1787–1799.

  35. [35]

    Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

  36. [36]

    Pang, Q.; Zhang, Y.; Zhang, J.-M.; Li, V.; Xu, K.-W. Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale 2011, 3, 4330–4338.

  37. [37]

    Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754.

  38. [38]

    Brandbyge, M.; Mozos, J.-L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

  39. [39]

    Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207–6215.

  40. [40]

    Nazarov, Y. V.; Blanter, Y. M. Quantum Transport: Introduction to Nanoscience; Cambridge University Press: Cambridge, 2009.

  41. [41]

    Cahangirov, S.; Topsakal, M.; Atatürk, E.; Sahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

  42. [42]

    Topsakal, M.; Bagci, V. M. K.; Ciraci, S. Current-voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys. Rev. B 2010, 81, 205437.

  43. [43]

    Kaneko, S.; Tsuchiya, H.; Kamakura, Y.; Mori, N.; Ogawa, M. Theoretical performance estimation of silicene, germanene, and graphene nanoribbon field-effect transistors under ballistic transport. Appl. Phys. Express 2014, 7, 035102.

  44. [44]

    van den Broek, B.; Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas' ev, V. V.; Stesmans, A. Functional silicene and stanene nanoribbons compared to graphene: Electronic structure and transport. 2D Mater. 2016, 3, 015001.

  45. [45]

    Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

  46. [46]

    Gao, N.; Li, J. C.; Jiang, Q. Tunable band gaps in silicene–MoS2 heterobilayers. Phys. Chem. Chem. Phys. 2014, 16, 11673–11678.

  47. [47]

    Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

  48. [48]

    Bader analysis needs a larger kinetic energy cutoff (350 Rydberg) in order to find the zero-flux surfaces and give the atomic charge populations.

  49. [49]

    Weinberg, Z. A. Tunneling of electrons from Si into thermally grown SiO2. Solid-State Electron. 1977, 20, 11–18.

  50. [50]

    Drummond, N. D.; Zólyomi, V.; Fal'ko, V. I. Electrically tunable band gap in silicone. Phys. Rev. B 2012, 85, 075423.

  51. [51]

    Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 2013, 15, 3702–3705.

  52. [52]

    Natori, K. Ballistic metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 1994, 76, 4879.

Download references

Author information

Correspondence to Bas van den Broek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van den Broek, B., Houssa, M., Lu, A. et al. Silicene nanoribbons on transition metal dichalcogenide substrates: Effects on electronic structure and ballistic transport. Nano Res. 9, 3394–3406 (2016) doi:10.1007/s12274-016-1217-4

Download citation

Keywords

  • silicene
  • transition metal dichalcogenides
  • van der Waals heterostructure
  • electronic structure
  • ballistic transport