Advertisement

Nano Research

, Volume 9, Issue 10, pp 3048–3055 | Cite as

Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications

  • Zhaolong Chen
  • Baolu Guan
  • Xu-dong Chen
  • Qing Zeng
  • Li Lin
  • Ruoyu Wang
  • Manish Kr. Priydarshi
  • Jingyu Sun
  • Zhepeng Zhang
  • Tongbo Wei
  • Jinmin Li
  • Yanfeng Zhang
  • Yingying ZhangEmail author
  • Zhongfan LiuEmail author
Research Article

Abstract

Fast and uniform growth of high-quality graphene on conventional glass is of great importance for practical applications of graphene glass. We report herein a confined-flow chemical vapor deposition (CVD) approach for the high-efficiency fabrication of graphene glass. The key feature of our approach is the fabrication of a 2–4 μm wide gap above the glass substrate, with plenty of stumbling blocks; this gap was found to significantly increase the collision probability of the carbon precursors and reactive fragments between one another and with the glass surface. As a result, the growth rate of graphene glass increased remarkably, together with an improvement in the growth quality and uniformity as compared to those in the conventional gas flow CVD technique. These high-quality graphene glasses exhibited an excellent defogging performance with much higher defogging speed and higher stability compared to those previously reported. The graphene sapphire glass was found to be an ideal substrate for growing uniform and ultra-smooth aluminum nitride thin films without the tedious pre-deposition of a buffer layer. The presented confined-flow CVD approach offers a simple and low-cost route for the mass production of graphene glass, which is believed to promote the practical applications of various graphene glasses.

Keywords

graphene glass confined-flow chemical vapor deposition transparent heating device epitaxial AlN film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1187_MOESM1_ESM.pdf (1.4 mb)
Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications

References

  1. [1]
    Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Lightemitting diodes by band-structure engineering in van der waals heterostructures. Nat. Mater. 2015, 14, 301–306.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  3. [3]
    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  4. [4]
    Yan, K.; Fu, L.; Peng, H. L.; Liu, Z. F. Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 2013, 46, 2263–2274.CrossRefGoogle Scholar
  5. [5]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefGoogle Scholar
  6. [6]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  7. [7]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  8. [8]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  9. [9]
    Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L.-P.; Zhang, Z. Y.; Fu, Q.; Peng, L.-M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.CrossRefGoogle Scholar
  10. [10]
    Hwang, J.; Kim, M.; Campbell, D.; Alsalman, H. A.; Kwak, J. Y.; Shivaraman, S.; Woll, A. R.; Singh, A. K.; Hennig, R. G.; Gorantla, S. et al. Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 2013, 7, 385–395.CrossRefGoogle Scholar
  11. [11]
    Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C. et al. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 2011, 5, 8062–8069.CrossRefGoogle Scholar
  12. [12]
    Strupinski, W.; Grodecki, K.; Wysmolek, A.; Stepniewski, R.; Szkopek, T.; Gaskell, P. E.; Grüneis, A.; Haberer, D.; Bozek, R.; Krupka, J. et al. Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett. 2011, 11, 1786–1791.CrossRefGoogle Scholar
  13. [13]
    Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548–17551.CrossRefGoogle Scholar
  14. [14]
    Chen, J. Y.; Guo, Y. L.; Jiang, L. L.; Xu, Z. P.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Hu, W. P.; Yu, G. et al. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 2014, 26, 1348–1353.CrossRefGoogle Scholar
  15. [15]
    Chen, J. Y.; Guo, Y. L.; Wen, Y. G.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Luo, B. R.; Yu, G.; Liu, Y. Q. Twostage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 2013, 25, 992–997.CrossRefGoogle Scholar
  16. [16]
    Gao, T.; Song, X. J.; Du, H. W.; Nie, Y. F.; Chen, Y. B.; Ji, Q. Q.; Sun, J. Y.; Yang, Y. L.; Zhang, Y. F.; Liu, Z. F. Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 2015, 6, 6835.CrossRefGoogle Scholar
  17. [17]
    Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C.-C.; Zhang, L. L.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797.CrossRefGoogle Scholar
  18. [18]
    Sun, J. Y.; Gao, T.; Song, X. J.; Zhao, Y. F.; Lin, Y. W.; Wang, H. C.; Ma, D. L.; Chen, Y. B.; Xiang, W. F.; Wing, J. et al. Direct growth of high-quality graphene on high dielectric SrTiO3 substrates. J. Am. Chem. Soc. 2014, 136, 6574–6577.CrossRefGoogle Scholar
  19. [19]
    Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.CrossRefGoogle Scholar
  20. [20]
    Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.CrossRefGoogle Scholar
  21. [21]
    Sun, J. Y.; Chen, Y. B.; Cai, X.; Ma, B. J.; Chen, Z. L.; Priydarshi, M. K.; Chen, K.; Gao, T.; Song, X. J.; Ji, Q. Q. et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano. Res. 2015, 8, 3496–3504.CrossRefGoogle Scholar
  22. [22]
    Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Graphene glass: Direct growth of graphene on traditional glasses. Acta Phys.-Chim. Sin. 2016, 32, 14–27.Google Scholar
  23. [23]
    Plummer, J. Graphene synthesis: Molten bed. Nat. Mater. 2015, 14, 1186.CrossRefGoogle Scholar
  24. [24]
    Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238–242.CrossRefGoogle Scholar
  25. [25]
    Nikitin, A.; Näslund, L.-A.; Zhang, Z. Y.; Nilsson, A. C–H bond formation at the graphite surface studied with core level spectroscopy. Surf. Sci. 2008, 602, 2575–2580.CrossRefGoogle Scholar
  26. [26]
    Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A. V.; Yavari, F.; Shi, Y. F.; Ajayan, P. M.; Koratkar, N. A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217–222.CrossRefGoogle Scholar
  27. [27]
    Xia, K. L.; Jian, M. Q.; Zhang, W. L.; Zhang, Y. Y. Visualization of graphene on various substrates based on water wetting behavior. Adv. Mater. Interfaces 2016, 3, DOI: 10.1002/admi.201500674.Google Scholar
  28. [28]
    Sui, D.; Huang, Y.; Huang, L.; Liang, J. J.; Ma, Y. F.; Chen, Y. S. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186–3192.CrossRefGoogle Scholar
  29. [29]
    Tan, L. F.; Zeng, M. Q.; Wu, Q.; Chen, L. F.; Wang, J.; Zhang, T.; Eckert, J.; Rümmeli, M. H.; Fu, L. Direct growth of ultrafast transparent single-layer graphene defoggers. Small 2015, 11, 1840–1846.CrossRefGoogle Scholar
  30. [30]
    Taniyasu, Y.; Kasu, M. Surface 210 nm light emission from an AlN p-n junction light-emitting diode enhanced by A-plane growth orientation. Appl. Phys. Lett. 2010, 96, 221110.CrossRefGoogle Scholar
  31. [31]
    Hirayama, H.; Fujikawa, S.; Noguchi, N.; Norimatsu, J.; Takano, T.; Tsubaki, K.; Kamata, N. 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on highquality ALN on sapphire. Phys. Status Solidi A 2009, 206, 1176–1182.CrossRefGoogle Scholar
  32. [32]
    Satter, M. M.; Kim, H.-J.; Lochner, Z.; Ryou, J.-H.; Shen, S.-C.; Dupuis, R. D.; Yoder, P. D. Design and analysis of 250-nm AlInN laser diodes on AlN substrates using tapered electron blocking layers. IEEE J. Quantum Electron. 2012, 48, 703–711.CrossRefGoogle Scholar
  33. [33]
    Van Hove, M.; Boulay, S.; Bahl, S. R.; Stoffels, S.; Kang, X. W.; Wellekens, D.; Geens, K.; Delabie, A.; Decoutere, S. CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon. IEEE Electr. Device L. 2012, 33, 667–669.CrossRefGoogle Scholar
  34. [34]
    Chung, K.; Lee, C.-H.; Yi, G.-C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 2010, 330, 655–657.CrossRefGoogle Scholar
  35. [35]
    Kim, J.; Bayram, C.; Park, H.; Cheng, C.-W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K. Principle of direct van der waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 2014, 5, 4836.CrossRefGoogle Scholar
  36. [36]
    Al Balushi, Z. Y.; Miyagi, T.; Lin, Y.-C.; Wang, K.; Calderin, L.; Bhimanapati, G.; Redwing, J. M.; Robinson, J. A. The impact of graphene properties on GaN and AlN nucleation. Surf. Sci. 2015, 634, 81–88.CrossRefGoogle Scholar
  37. [37]
    Gupta, P.; Rahman, A. A.; Hatui, N.; Gokhale, M. R.; Deshmukh, M. M.; Bhattacharya, A. MOVPE growth of semipolar III-nitride semiconductors on CVD graphene. J. Cryst. Growth 2013, 372, 105–108.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhaolong Chen
    • 1
  • Baolu Guan
    • 1
    • 2
  • Xu-dong Chen
    • 1
  • Qing Zeng
    • 3
  • Li Lin
    • 1
  • Ruoyu Wang
    • 1
  • Manish Kr. Priydarshi
    • 1
  • Jingyu Sun
    • 1
  • Zhepeng Zhang
    • 1
  • Tongbo Wei
    • 3
  • Jinmin Li
    • 3
  • Yanfeng Zhang
    • 1
    • 4
  • Yingying Zhang
    • 5
    Email author
  • Zhongfan Liu
    • 1
    Email author
  1. 1.Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Key Laboratory of Opto-electronics Technology, Ministry of EducationBeijing University of TechnologyBeijingChina
  3. 3.State Key Laboratory of Solid-State Lighting, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  4. 4.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  5. 5.Department of Chemistry and Center for Nano and Micro MechanicsTsinghua UniversityBeijingChina

Personalised recommendations