Nano Research

, Volume 9, Issue 10, pp 2889–2903

An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles

  • Aaron S. Schwartz-Duval
  • Santosh K. Misra
  • Prabuddha Mukherjee
  • Elyse Johnson
  • Alvin S. Acerbo
  • Dipanjan Pan
Research Article

Abstract

Of late, many synthesis processes have been studied to develop irregular nano-morphologies of gold nanostructures for biomedical applications in order to increase the efficacy of nanoparticle theranostics, tune the plasmonic absorbance spectra, and increase the sensitivity of biomolecule detection through surface enhanced Raman spectroscopy. Here we report, a novel, non-seed mediated versatile single pot synthesis method capable of producing hyperbranched gold “nano-polyvilli” with more than 50–90 branching nanowires propagating from a single origin within each structure. The technique was capable of achieving precise tuning of the branch propagation where the branching could be controlled by varying the duration of incubation, temperature, and hydrogen ion concentration.

Keywords

gold nanoparticles surface enhanced Raman spectroscopy (SERS) anisotropy asymmetric nanocrystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1174_MOESM1_ESM.pdf (2.5 mb)
An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles
12274_2016_1174_MOESM2_ESM.avi (2.8 mb)
Supplementary material, approximately 2.75 MB.

References

  1. [1]
    Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.CrossRefGoogle Scholar
  2. [2]
    Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.CrossRefGoogle Scholar
  3. [3]
    Ding, Y.; Jiang, Z. W.; Saha, K.; Kim, C. S.; Kim, S. T.; Landis, R. F.; Rotello, V. M. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 2014, 22, 1075–1083.CrossRefGoogle Scholar
  4. [4]
    Rouhana, L. L.; Jaber, J. A.; Schlenoff, J. B. Aggregationresistant water-soluble gold nanoparticles. Langmuir 2007, 23, 12799–12801.CrossRefGoogle Scholar
  5. [5]
    Cormode, D. P.; Roessl, E.; Thran, A.; Skajaa, T.; Gordon, R. E.; Schlomka, J.-P.; Fuster, V.; Fisher, E. A.; Mulder, W. J. M.; Proksa, R. et al. Atherosclerotic plaque composition: Analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010, 256, 774–782.CrossRefGoogle Scholar
  6. [6]
    Schirra, C. O.; Senpan, A.; Roessl, E.; Thran, A.; Stacy, A. J.; Wu, L.; Proska, R.; Pan, D. Second generation gold nanobeacons for robust K-edge imaging with multi-energy CT. J. Mater. Chem. 2012, 22, 23071–23077.CrossRefGoogle Scholar
  7. [7]
    O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209, 171–176.CrossRefGoogle Scholar
  8. [8]
    Pan, D.; Pramanik, M.; Senpan, A.; Ghosh, S.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 2010, 31, 4088–4093.CrossRefGoogle Scholar
  9. [9]
    Yuan, H.; Khoury, C. G.; Hwang, H.; Wilson, C. M.; Grant, G. A.; Vo-Dinh, T. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 2012, 23, 075102.CrossRefGoogle Scholar
  10. [10]
    Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.CrossRefGoogle Scholar
  11. [11]
    Wang, Y. C.; Black, K. C. L.; Luehmann, H.; Li, W. Y.; Zhang, Y.; Cai, X.; Wan, D. H.; Liu, S. Y.; Li, M.; Kim, P. et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013, 7, 2068–2077.CrossRefGoogle Scholar
  12. [12]
    Pan, D.; Pramanik, M.; Senpan, A.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. A facile synthesis of novel self-assembled gold nanorods designed for near-infrared imaging. J. Nanosci. Nanotechnol. 2010, 10, 8118–8123.CrossRefGoogle Scholar
  13. [13]
    Fales, A. M.; Yuan, H.; Vo-Dinh, T. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: A potential nanoplatform for theranostics. Langmuir 2011, 27, 12186–12190.CrossRefGoogle Scholar
  14. [14]
    Gottheim, S.; Zhang, H.; Govorov, A. O.; Halas, N. J. Fractal nanoparticle plasmonics: The cayley tree. 2015, 9, 3284–3292.Google Scholar
  15. [15]
    Xiao, J. Y.; Qi, L. M. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 2011, 3, 1383–1396.CrossRefGoogle Scholar
  16. [16]
    Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.CrossRefGoogle Scholar
  17. [17]
    Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.CrossRefGoogle Scholar
  18. [18]
    Averitt, R. D.; Sarkar, D.; Halas, N. J. Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 1997, 78, 4217–4220.CrossRefGoogle Scholar
  19. [19]
    Rotz, M. W.; Culver, K. S. B.; Parigi, G.; MacRenaris, K. W.; Luchinat, C.; Odom, T. W.; Meade, T. J. High relaxivity Gd(III)-DNA gold nanostars: Investigation of shape effects on proton relaxation. ACS Nano 2015, 9, 3385–3396.CrossRefGoogle Scholar
  20. [20]
    Kim, T.-I.; Kim, J.-H.; Son, S. J.; Seo, S.-M. Gold nanocones fabricated by nanotransfer printing and their application for field emission. Nanotechnology 2008, 19, 295302.CrossRefGoogle Scholar
  21. [21]
    Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482–488.CrossRefGoogle Scholar
  22. [22]
    Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99.CrossRefGoogle Scholar
  23. [23]
    Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121, 2768–2780.CrossRefGoogle Scholar
  24. [24]
    Cho, K.; Wang, X.; Nie, S. M.; Chen, Z. G.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316.CrossRefGoogle Scholar
  25. [25]
    Pan, D.; Schmieder, A. H.; Wang, K. Z.; Yang, X. X.; Senpan, A.; Cui, G.; Killgore, K.; Kim, B.; Allen, J. S.; Zhang, H. Y. et al. Anti-angiogenesis therapy in the Vx2 rabbit cancer model with a lipase-cleavable Sn 2 taxane phospholipid prodrug using avß3-targeted theranostic nanoparticles. Theranostics 2014, 4, 565–578.CrossRefGoogle Scholar
  26. [26]
    Faraji, A. H.; Wipf, P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 2009, 17, 2950–2962.CrossRefGoogle Scholar
  27. [27]
    Sk Md, N.; Kim, H. K.; Park, J. A.; Chang, Y. M.; Kim, T. J. Gold nanoparticles coated with Gd-chelate as a potential CT/MRI bimodal contrast agent. Bull. Korean Chem. Soc. 2010, 31, 1177–1181.CrossRefGoogle Scholar
  28. [28]
    Moriggi, L.; Cannizzo, C.; Dumas, E.; Mayer, C. R.; Ulianov, A.; Helm, L. Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents. J. Am. Chem. Soc. 2009, 131, 10828–10829.CrossRefGoogle Scholar
  29. [29]
    Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 5908–5915.CrossRefGoogle Scholar
  30. [30]
    Jokerst, J. V.; Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011, 44, 1050–1060.CrossRefGoogle Scholar
  31. [31]
    Pan, D.; Pramanik, M.; Senpan, A.; Allen, J. S.; Zhang, H. Y.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 2011, 25, 875–882.CrossRefGoogle Scholar
  32. [32]
    Cao, Y. Y.; He, Y.; Liu, H.; Luo, Y.; Shen, M. W.; Xia, J. D.; Shi, X. Y. Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid. J. Mater. Chem. B 2015, 3, 286–295.CrossRefGoogle Scholar
  33. [33]
    Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008, 8, 4593–4596.CrossRefGoogle Scholar
  34. [34]
    Champion, J. A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 103, 4930–4934.CrossRefGoogle Scholar
  35. [35]
    Champion, J. A.; Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 2009, 26, 244–249.CrossRefGoogle Scholar
  36. [36]
    Huang, X. L.; Teng, X.; Chen, D.; Tang, F. Q.; He, J. Q. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438–448.CrossRefGoogle Scholar
  37. [37]
    Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of nanomedicines. J. Control. Release 2010, 145, 182–195.CrossRefGoogle Scholar
  38. [38]
    Darbandi, A.; Kavanagh, K. L.; Watkins, S. P. Lithographyfree fabrication of core–shell GaAs nanowire tunnel diodes. Nano Lett. 2015, 15, 5408–5413.CrossRefGoogle Scholar
  39. [39]
    Liu, R. Y.; Zhang, F. T.; Con, C.; Cui, B.; Sun, B. Q. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching. Nanoscale Res. Lett. 2013, 8, 155.CrossRefGoogle Scholar
  40. [40]
    Liu, K.; Zeng, X.; Jiang, S. H.; Ji, D. X.; Song, H. M.; Zhang, N.; Gan, Q. Q. A large-scale lithography-free metasurface with spectrally tunable super absorption. Nanoscale 2014, 6, 5599–5605.CrossRefGoogle Scholar
  41. [41]
    Nalbant Esenturk, E.; Hight Walker, A. R. Surface-enhanced Raman scattering spectroscopy via gold nanostars. J. Raman Spectrosc. 2009, 40, 86–91.CrossRefGoogle Scholar
  42. [42]
    Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Single gold nanostars enhance Raman scattering. Appl. Phys. Lett. 2009, 94, 153113.CrossRefGoogle Scholar
  43. [43]
    Yuan, H.; Fales, A. M.; Khoury, C. G.; Liu, J.; Vo-Dinh, T. Spectral characterization and intracellular detection of surfaceenhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J. Raman Spectrosc. 2013, 44, 234–239.CrossRefGoogle Scholar
  44. [44]
    Lu, G. W.; Li, C.; Shi, G. Q. Synthesis and characterization of 3D dendritic gold nanostructures and their use as substrates for surface-enhanced Raman scattering. Chem. Mater. 2007, 19, 3433–3440.CrossRefGoogle Scholar
  45. [45]
    Léger, C.; Argoul, F.; Bazant, M. Z. Front dynamics during diffusion-limited corrosion of ramified electrodeposits. J. Phys. Chem. B 1999, 103, 5841–5851.CrossRefGoogle Scholar
  46. [46]
    Picioreanu, C.; van Loosdrecht, M. C.; Heijnen, J. J. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 1998, 58, 101–116.CrossRefGoogle Scholar
  47. [47]
    Fujikawa, H.; Matsushita, M. Bacterial fractal growth in the concentration field of nutrient. J. Phys. Soc. Jpn. 1991, 60, 88–94.CrossRefGoogle Scholar
  48. [48]
    Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Phys. D Nonlinear Phenom. 1993, 63, 410–423.CrossRefGoogle Scholar
  49. [49]
    Langer, J. S. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 1980, 52, 1–28.CrossRefGoogle Scholar
  50. [50]
    Keshavarzi, A.; Wisniewski, W.; Rüssel, C. Dendritic growth of yttrium aluminum garnet from an oxide melt in the system SiO2/Al2O3/Y2O3/CaO. CrystEngComm 2012, 14, 6904–6909.CrossRefGoogle Scholar
  51. [51]
    Hiramatsu, H.; Osterloh, F. E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509–2511.CrossRefGoogle Scholar
  52. [52]
    Liu, X.; Atwater, M.; Wang, J. H.; Dai, Q.; Zou, J. H.; Brennan, J. P.; Huo, Q. A study on gold nanoparticle synthesis using oleylamine as both reducing agent and protecting ligand. J. Nanosci. Nanotechnol. 2007, 7, 3126–3133.CrossRefGoogle Scholar
  53. [53]
    Lu, X. M.; Yavuz, M. S.; Tuan, H.-Y.; Korgel, B. A.; Xia, Y. N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 2008, 130, 8900–8901.CrossRefGoogle Scholar
  54. [54]
    Yue, Y.; Kan, Y. W.; Choi, H.; Clearfield, A.; Liang, H. Correlating hydrodynamic radii with that of two-dimensional nanoparticles. Appl. Phys. Lett. 2015, 107, 253103.CrossRefGoogle Scholar
  55. [55]
    Khlebtsov, B. N.; Khlebtsov, N. G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 2011, 73, 118–127.CrossRefGoogle Scholar
  56. [56]
    Rodríguez-Fernández, J.; Pérez-Juste, J.; Liz-Marzán, L. M.; Lang, P. R. Dynamic light scattering of short au rods with low aspect ratios. J. Phys. Chem. C 2007, 111, 5020–5025.CrossRefGoogle Scholar
  57. [57]
    Limbach, L. K.; Wick, P.; Manser, P.; Grass, R. N.; Bruinink, A.; Stark, W. J. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007, 41, 4158–4163.CrossRefGoogle Scholar
  58. [58]
    Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; de la Fuente, J. M.; Nienhaus, G. U.; Parak, W. J. Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake. ACS Nano 2015, 9, 6996–7008.CrossRefGoogle Scholar
  59. [59]
    Schrade, A.; Mailänder, V.; Ritz, S.; Landfester, K.; Ziener, U. Surface roughness and charge influence the uptake of nanoparticles: Fluorescently labeled pickering-type versus surfactant-stabilized nanoparticles. Macromol. Biosci. 2012, 12, 1459–1471.CrossRefGoogle Scholar
  60. [60]
    Akilbekova, D.; Philiph, R.; Graham, A.; Bratlie, K. M. Macrophage reprogramming: Influence of latex beads with various functional groups on macrophage phenotype and phagocytic uptake in vitro. J. Biomed. Mater. Res. A 2015, 103, 262–268.CrossRefGoogle Scholar
  61. [61]
    Razani, B.; Woodman, S. E.; Lisanti, M. P. Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 2002, 54, 431–467.CrossRefGoogle Scholar
  62. [62]
    Arias, J. L.; Fernández, M. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem. Rev. 2008, 108, 4475–4482.CrossRefGoogle Scholar
  63. [63]
    Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Aaron S. Schwartz-Duval
    • 1
    • 2
  • Santosh K. Misra
    • 1
    • 2
  • Prabuddha Mukherjee
    • 1
  • Elyse Johnson
    • 3
  • Alvin S. Acerbo
    • 4
  • Dipanjan Pan
    • 1
    • 2
  1. 1.Department of Bioengineering and Beckman InstituteUniversity of Illinois, Urbana-ChampaignUrbanaUSA
  2. 2.Biomedical Research CenterCarle Foundation HospitalUrbanaUSA
  3. 3.Cytoviva Inc.AuburnUSA
  4. 4.Center for Advanced Radiation SourcesThe University of ChicagoChicagoUSA

Personalised recommendations